Skip to main content
  • 1078 Accesses

This chapter is written in collaboration with Dr. Michael C. Vogt (Argome National Laboratory).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edmonds, T.E. (ed). Chemical Sensors. Blackie and Son, New York, 1988.

    Google Scholar 

  2. General Information for TGS Sensors, Rev. 6.98. Figaro USA Inc., Glenview, IL, 1998.

    Google Scholar 

  3. Sberveglieri, G. (ed.). Gas Sensors: Principles, Operations, and Developments, Kluwer Academic, Boston, MA, 1992, pp. 8, 148, 282, 346–408.

    Google Scholar 

  4. Blum, L.J., Bio-and Chemi-Luminescent Sensors, World Scientific, River Edge, NJ, 1997, pp. 6–32.

    Google Scholar 

  5. Smith, J.A, Polk B.J., Kikas, T., and Levermore, D.M. ChemFETs: Chemical sensors for the real world. www.bizoki.chemistry.gatech.edu/janata-chemical-sensors, 2000.

    Google Scholar 

  6. Wróblewski, W., Dawgul, M., Torbicz, W., and Brzózka, Z. Anion-selective CHEMFETs, Department of Analytical Chemistry, Warsaw University of Technology, Warsaw, 2000.

    Google Scholar 

  7. Hydrogen sensor (white paper), Sandia National Laboratory, Sandia, NM, 2002; abailable from www.sandia.gov/mstc/technologies/microsensors/techinfo.

    Google Scholar 

  8. Gentry, S. J. Catalytic devices. In: Chemical Sensors. Edmonds, T. E. (ed.). Chapman & Hall, New York, 1988.

    Google Scholar 

  9. Cobbold, R.S.C. Transducers for Biomedical Measurements. John Wiley & Sons, New York, 1974.

    Google Scholar 

  10. Tan, T.C. and Liu, C.C. Principles and fabrication materials of electrochemical sensors. In: Chemical Sensor Technology. Kodansha Ltd., 1991, Vol. 3.

    Google Scholar 

  11. Clark, L.C. Monitor and control of blood and tissue oxygen tension. Trans. Am. Soc. Artif. Internal Org. 2, 41–46, 1956.

    Google Scholar 

  12. Vogt, M. C., Shoemaker, E. L., MacShane, D. A., and Turner, T. An intelligent gas microsensor employing neural network technology. J. Appl. Sensing Technol. September, 54–62, 1996.

    Google Scholar 

  13. LaCourse, W.R. Pulsed Electrochemical Detection in High-Performance Liquid Chromatography, John Wiley & Sons, New York, 1997, pp. 13–20, 49, 136, 173, 258–259.

    Google Scholar 

  14. Skubal, L.R., Meshkov, N.K., and Vogt, M.C. Detection and identification of gaseous organics using a TiO2 sensor, J. Photochem. Photobiol. A: Chem., 148, 103–108, 2002.

    Article  Google Scholar 

  15. Severin, E. Cyrano Sciences’ Sensor Technology—The heart of the Cyranose 320 Electronic Nose. Cyrano Sciences Inc., 2000; www.cyranosciences.com/technology/sensor.

    Google Scholar 

  16. Hydrocarbon fuel, HCl sensor look for trouble. Sensors, 11–12, 1991.

    Google Scholar 

  17. Dewa, A.S. and Ko, W.H. Biosensors. In: Semiconductor Sensors. Sze, S.M, (ed.). John Wiley & Sons, New York, 1994, pp. 415–472.

    Google Scholar 

  18. Morgan, C.H. and Cheung, P.W. An integrated optoelectronic CO2 gas sensor. In: Transducers’91. International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers. IEEE, New York, 1991, pp. 343–346.

    Google Scholar 

  19. Dybko, A. and Wroblewski, W. Fiber optic chemical sensors. www.ch.pw.edu. pl/~dybko/csrg/fiber/operating, 2000.

    Google Scholar 

  20. Seiler, K. and Simon, W. Principles and mechanisms of ion-selective optodes. Sensors Actuators B 6, 295–298, 1992.

    Article  Google Scholar 

  21. Ristic, V.M., Principles of Acoustic Devices. John Wiley & Sons, New York, 1983.

    Google Scholar 

  22. Nieuwenhuizen, M.S., et al. Transduction mechanism in SAW gas sensors. Electron. Lett. 22, 184–185, 1986.

    Article  Google Scholar 

  23. Wenzel, S.W. and While, R.M. Analytic comparison of the sensitivities of bulksurface-, and flextural plate-mode ultrasonic gravimetric sensors. Appl. Phys. Lett., 54, 1976–1978, 1989.

    Article  ADS  Google Scholar 

  24. Malmstadt, H.V., Enke, C.G., Crouch, S.R., and Horlick, G. Electronic Measurements for Scientists. W. A. Benjamin, Menlo Park, CA, 1974.

    Google Scholar 

  25. Wade, L.G. Organic Chemistry, Prentice-Hall, Englewood Cliff, NJ, 1987.

    Google Scholar 

  26. Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press, New York, 1995.

    Google Scholar 

  27. Smyth, M. R. and Vos, J. G. Comprehensive Analytical Chemistry—Analytical Voltammetry. Elsevier Science, New York, 1992, Vol. 27, pp. 20, 34, 59.

    Google Scholar 

  28. Bard, A.J. and Faulkner, L.R. Electrochemical Methods, John Wiley & Sons, New York, 1980, pp. 232–236.

    Google Scholar 

  29. Kumta, P.N., Manthiram, A., Sundaram, S.K. and Chiang, Y.M. (eds.). Processing and Characterization of Electrochemical Materials and Devices. American Ceramic Society, Westerville, OH, 2000, p. 379.

    Google Scholar 

  30. Albery, W.J. and Haggett, B.G.D. New electroanalytical techniques. Electrochemical detectors—fundamental aspects and analytical applications. Proceedings of a Symposium Sponsored by the Analytical and Faraday Division of the Royal Society of Chemistry, Ryan, T.H. (ed.). 1984, p. 15.

    Google Scholar 

  31. Scholander, A. Introduction to Practical Polarography. Jul. Gjellerups Forlag, Radiometer, Copenhagen, 1950.

    Google Scholar 

  32. Heyrovsky, J. and Zuman, P. Practical Polarography. An Introduction for Chemistry Students. Academic Press, New York, 1968.

    Google Scholar 

  33. Handbook of Electroanalytical Products, Bioanalytical Systems Inc., West Lafayette, IN, 1997.

    Google Scholar 

  34. Beebe, K.R., Pell, R.J. and Seasholtz, M.B. Chemometrics. A Practical Guide. John Wiley & Sons, New York, 1998.

    Google Scholar 

  35. Haswell, S.J. (ed.). Practical Guide to Chemometrics. Marcel Dekker, New York, 1992, pp. 39–43, 225–226, 310.

    Google Scholar 

  36. Einax, J.W., Zwanziger, H.W. and Geib, S. Chemometrics in Environmental Analysis. VCH, Weinheim, 1997, pp: 2–75.

    Google Scholar 

  37. Gottuk, D.T., Hill, S.A., Schemel, C.F., Strehlen, B.D., Rose-Pehrsson, S.L., Shaffer, R.E., Tatem, P.A., and Williams, F.W. Identification of fire signatures for shipboard multi-criteria fire detection systems. Report No. NRL/MR/6180-99-8386, Naval Research Laboratory, Washington, DC, 1999, pp. 48–87.

    Google Scholar 

  38. Prasad, L., Iyengar, S.S., Rao, R.L., and Kashyap, R.L. Fault-tolerant sensor integration using multiresolution decomposition. Phys. Rev. E. 49(4B), 3452–3461, 1994.

    Article  ADS  Google Scholar 

  39. Miyazaki, Y., et al. Responses of monolayer membranes of thiol-containing lipids to odor substances. Jpn. J. Appl. Phys., 31, 1555–1560, 1992.

    Article  ADS  Google Scholar 

  40. Matsuno, G., et al. A quartz crystal microbalance-type odor sensor using PVC-blended lipid membrane. IEEE Trans. Instrum. and Meas. 44(3), 739–742, 1995.

    Article  MathSciNet  Google Scholar 

  41. Keller, P.E., Kangas, L.J., Liden, L.H., Hashem, S., and Kouzes, R.T. PNNL Document Number: PNL-SA-26597, Pacific Northwest National Laboratory, Richland, WA, 1996.

    Google Scholar 

  42. Masters, T. Practical Neural Network Recipes in C++. Academic Press, Boston, MA, 1993, pp. 174–185.

    Google Scholar 

  43. Raimundo, I.M. and Narayanaswamy, R. Simultaneous determination of relative humidity and ammonia in air employing an optical fiber sensor and artificial neural network. Sensors Actuators B: Chem. 74(1–3), 60–68, 2001.

    Article  Google Scholar 

  44. Joo, B.S., Choi, N.J., Lee, Y.S., Lim, J.W., Kang, B.H., and Lee, D.D. Pattern recognition of gas sensor array using characteristics of impedance. Sensors Actuators B: Chem., 77(1–2), 209–214, 2001.

    Article  Google Scholar 

  45. Freeman, J. and Skapura, D. Neural Networks, Algorithms, Applications, and Programming Techniques. Addison-Wesley, Reading, MA, 1991, pp. 89–111.

    MATH  Google Scholar 

  46. Winquist, F, Hornsten, E.G., Sundgren, H., and Lundstrom, I. Performance of an electronic nose for quality estimation of ground meat. Meas. Sci. Technol., 4(12), 1493–1500, 1993.

    Article  ADS  Google Scholar 

  47. Stetter, J.R., Findlay, M.W., Schroeder, K.M., Yue, C., and Penrose, W.R. Quality classification of grain using a sensor array and pattern-recognition, Anal. Chem. Act., 284(1), 1–11, 1993.

    Article  Google Scholar 

  48. Nwagboso, C.O. (ed.). Automotive Sensory Systems. Chapman & Hall, New York, 1993, pp. 324–336.

    Google Scholar 

  49. Harsanyi, G. Sensors in Biomedical Applications Fundamentals. Technology and Applications. Technomic, Lancaster, PA, 2000, pp. 4–6, 65–67, 191, 295.

    Google Scholar 

  50. Kavanagh, R.C. Probabilistic learning technique for improved accuracy of sinusoidal encoders. IEEE Trans. Ind. Electron., 48(3), pp. 673–681, 2001.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2004). Chemical Sensors. In: Handbook of Modern Sensors. Springer, New York, NY. https://doi.org/10.1007/0-387-21604-9_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-21604-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00750-2

  • Online ISBN: 978-0-387-21604-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics