Skip to main content

Technical Aspects of the Detection of Disseminated Tumour Cells by Molecular Methods

  • Chapter
Micrometastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 5))

  • 244 Accesses

Abstract

The standard method for the detection of disseminated epithelial tumour cells is still immunocytochemistry despite some concerns such as relative low sensitivity and subjective evaluation. Several approaches have been made to develop sensitive and specific polymerase-chain reaction assays comparable to those in use for detection of minimal residual disease in haematological malignancies. The major problem is the absence of specific genetic aberrations in solid cancer. Thus, researchers focused on amplification of so-called tissue-specific expressed genes such as epithelial structure proteins or messenger RNA of tumour markers or tumour-associated proteins. Most assays were described as highly specific valuable tools by the developers, and subsequently as non-specific by investigators. This chapter describes the mechanisms leading to so-called ‘false-positive’ and ‘false-negative’ results, and discusses the strength and weakness of RT-PCR for detection of solid cancer cells. Furthermore, strategies are discussed for development of reverse-transcriptase polymerase-chain reaction systems and for using and increasing their specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pantel K. Detection of minimal disease in patients with solid tumours. J Hematother. 1996; 5:359–367.

    PubMed  CAS  Google Scholar 

  2. Radich J. Minimal residual disease. Curr Opin Hematol. 1995; 2:300–304.

    Article  PubMed  CAS  Google Scholar 

  3. Van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991; 198:93–174.

    Article  PubMed  Google Scholar 

  4. Van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta. 1991; 198:1–91.

    Article  PubMed  Google Scholar 

  5. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. 2nd ed. Cold Spring Harbor: Laboratory Press, 1989.

    Google Scholar 

  6. Gribben J, Nadler L. Detection of minimal residual disease. Cancer Treat Res. 1995; 76:249–270.

    PubMed  CAS  Google Scholar 

  7. Cross NC. Minimal residual disease in chronic myeloid leukaemia. Hematol Cell Ther. 1998; 40:224–228.

    PubMed  CAS  Google Scholar 

  8. Baurmann H, Nagel S, Binder T, Neubauer A, Siegert W, Huhn D. Kinetics of the graft-versus-leukemia response after donor leukocyte infusions for relapsed chronic myeloid leukemia after allogeneic bone marrow transplantation. Blood. 1998; 92:3582–3590.

    PubMed  CAS  Google Scholar 

  9. Jung R, Soondrum K, Krüger W, Neumaier M. Detection of micrometastasis through tissue-specific gene expression: its promise and problems. Recent Results Cancer Res. 2001; 158:32–39.

    PubMed  CAS  Google Scholar 

  10. Van de Vijver MJ, Nusse R. The molecular biology of breast cancer. Biochim Biophys Acta. 1991; 1072:33–50.

    PubMed  Google Scholar 

  11. Wagener C, Breuer H. [Diagnostic significance of tumour markers in clinical chemistry. Report on the workshop conference of the German Society for Clinical Chemistry, held on November 15–17, 1979 in Schloss Auel (author’s transl.)]. J Clin Chem Clin Biochem. 1980; 18:821–827.

    PubMed  CAS  Google Scholar 

  12. Gerhard M, Juhl H, Kalthoff H, Schreiber HW, Wagener C, Neumaier M. Specific detection of carcinoembryonic antigen-expressing tumour cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol. 1994; 12:725–729.

    PubMed  CAS  Google Scholar 

  13. Futamura M, Takagi Y, Koumura H, Kida H, Tanemura H, Shimokawa K et al. Spread of colorectal cancer micrometastases in regional lymph nodes by reverse transcriptase-polymerase chain reactions for carcinoembryonic antigen and cytokeratin 20. J Surg Oncol. 1998; 68:34–40.

    Article  PubMed  CAS  Google Scholar 

  14. Mori M, Mimori K, Inoue H, Barnard GF, Tsuji K, Nanbara S et al. Detection of cancer micrometastases in lymph nodes by reverse transcriptase-polymerase chain reaction. Cancer Res. 1995; 55:3417–3420.

    PubMed  CAS  Google Scholar 

  15. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumours and cultured cells. Cell. 1982; 31:11–24.

    Article  PubMed  CAS  Google Scholar 

  16. Tschentscher P, Wagener C, Neumaier M. Sensitive and specific cytokeratin 18 reverse transcription-polymerase chain reaction that excludes amplification of processed pseudogenes from contaminating genomic DNA. Clin Chem. 1997; 43:2244–2250.

    PubMed  CAS  Google Scholar 

  17. Krüger W, Krzizanowski C, Holweg M, Stockschläder M, Kröger N, Jung R et al. Reverse transcriptase/polymerase chain reaction detection of cytokeratin-19 mRNA in bone marrow and blood of breast cancer patients. J Cancer Res Clin Oncol. 1996; 122:679–686.

    PubMed  Google Scholar 

  18. Soeth E, Roder C, Juhl H, Krüger U, Kremer B, Kalthoff H. The detection of disseminated tumour cells in bone marrow from colorectal-cancer patients by a cytokeratin-20-specific nested reverse-transcriptase-polymerase-chain reaction is related to the stage of disease. Int J Cancer. 1996; 69:278–282.

    Article  PubMed  CAS  Google Scholar 

  19. Datta YH, Adams PT, Drobyski WR, Ethier SP, Terry VH, Roth MS. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol. 1994; 12:475–482.

    PubMed  CAS  Google Scholar 

  20. Fields KK, Elfenbein GJ, Trudeau WL, Perkins JB, Janssen WE, Moscinski LC. Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol. 1996; 14:1868–1876.

    PubMed  CAS  Google Scholar 

  21. Noguchi S, Hiratsuka M, Furukawa H, Aihara T, Kasugai T, Tamura S et al. Detection of gastric cancer micrometastases in lymph nodes by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Jpn J Cancer Res. 1996; 87:650–654.

    PubMed  CAS  Google Scholar 

  22. Aihara T, Noguchi S, Ishikawa O, Furukawa H, Hiratsuka M, Ohigashi H et al. Detection of pancreatic and gastric cancer cells in peripheral and portal blood by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Int J Cancer. 1997; 72:408–411.

    Article  PubMed  CAS  Google Scholar 

  23. Soeth E, Vogel I, Roder C, Juhl H, Marxsen J, Kruger U et al. Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumour cells using reverse transcription PCR. Cancer Res. 1997; 57:3106–3110.

    PubMed  CAS  Google Scholar 

  24. Moll R, Lowe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992; 140:427–447.

    PubMed  CAS  Google Scholar 

  25. Hildebrandt M, Mapara MY, Korner IJ, Bargou RC, Moldenhauer G, Dorken B. Reverse transcriptase-polymerase chain reaction (RT-PCR)-controlled immunomagnetic purging of breast cancer cells using the magnetic cell separation (MACS) system: a sensitive method for monitoring purging efficiency. Exp Hematol. 1997; 25:57–65.

    PubMed  CAS  Google Scholar 

  26. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol. 1995; 57:607–634.

    Article  PubMed  CAS  Google Scholar 

  27. Dearnaley DP, Ormerod MG, Sloane JP. Micrometastases in breast cancer: long-term follow-up of the first patient cohort. Eur J Cancer. 1991; 27:236–239.

    PubMed  CAS  Google Scholar 

  28. Diel IJ, Kaufmann M, Costa SD, Holle R, von MG, Solomayer EF et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst. 1996; 88:1652–1658.

    PubMed  CAS  Google Scholar 

  29. Delsol G, Gatter KC, Stein H, Erber WN, Pulford KA, Zinne K et al. Human lymphoid cells express epithelial membrane antigen. Implications for diagnosis of human neoplasms. Lancet. 1984; 2:1124–1129.

    PubMed  CAS  Google Scholar 

  30. Takahashi T, Makiguchi Y, Hinoda Y, Kakiuchi H, Nakagawa N, Imai K et al. Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient. J Immunol. 1994; 153:2102–2109.

    PubMed  CAS  Google Scholar 

  31. Brugger W, Buhring HJ, Grunebach F, Vogel W, Kaul S, Muller R et al. Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumour cells. J Clin Oncol. 1999; 17:1535–1544.

    PubMed  CAS  Google Scholar 

  32. Noguchi S, Aihara T, Nakamori S, Motomura K, Inaji H, Imaoka S et al. The detection of breast carcinoma micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Cancer. 1994; 74:1595–1600.

    PubMed  CAS  Google Scholar 

  33. Becker RM, Darrow C, Zimonjic DB, Popescu NC, Watson MA, Fleming TP. Identification of mammaglobin B, a novel member of the uteroglobin gene family. Genomics. 1998; 54:70–78.

    Article  PubMed  CAS  Google Scholar 

  34. Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R et al. Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res. 1999; 59:3028–3031.

    PubMed  CAS  Google Scholar 

  35. Zach O, Kasparu H, Krieger O, Hehenwarter W, Girschikofsky M, Lutz D. Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via a nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J Clin Oncol. 1999; 17:2015.

    PubMed  CAS  Google Scholar 

  36. Patton S, Gendler SJ, Spicer AP. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta. 1995; 1241:407–423.

    PubMed  CAS  Google Scholar 

  37. Larocca D, Peterson JA, Urrea R, Kuniyoshi J, Bistrain AM, Ceriani RL. A Mr 46,000 human milk fat globule protein that is highly expressed in human breast tumours contains factor VIII-like domains. Cancer Res. 1991; 51:4994–4998.

    PubMed  CAS  Google Scholar 

  38. Larocca D, Peterson JA, Walkup G, Urrea R, Ceriani RL. Cloning and sequencing of a complementary DNA encoding a Mr 70,000 human breast epithelial mucin-associated antigen. Cancer Res. 1990; 50:5925–5930.

    PubMed  CAS  Google Scholar 

  39. Krüger WH, Jung R, Detlefsen B, Badbaran A, Renges H, Kröger N et al. Interference of cytokeratin-20-and mammaglobin-reverse transcriptase polymerase chain assays designed for the detection of disseminated cancer cells. Med Oncol. 2001; 18:33–38.

    PubMed  Google Scholar 

  40. Dent GA, Civalier CJ, Brecher ME, Bentley SA. MUC1 expression in hematopoietic tissues. Am J Clin Pathol. 1999; 111:741–747.

    PubMed  CAS  Google Scholar 

  41. Krüger W, Kröger N, Zander AR. MUC1 expression in hemopoietic tissues. J Hematother Stem Cell Res. 2000; 9:409–410.

    PubMed  Google Scholar 

  42. Krüger W, Lohner R, Jung R, Kröger N, Zander AR. Expression of human milk fat globulin proteins in cells of haemopoietic origin. Brit J Cancer. 2000; 83:874–879.

    PubMed  Google Scholar 

  43. Traweek ST, Liu J, Battifora H. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am J Pathol. 1993; 142:1111–1118.

    PubMed  CAS  Google Scholar 

  44. Jung R, Krüger W, Hosch S, Holweg M, Kroger N, Gutensohn K et al. Specificity of reverse transcriptase polymerase chain reaction assays designed for the detection of circulating cancer cells is influenced by cytokines in vivo and in vitro. Brit J Cancer. 1998; 78:1194–1198.

    PubMed  CAS  Google Scholar 

  45. Jung R, Petersen K, Krüger W, Wolf M, Wagener C, Zander A et al. Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Brit J Cancer. 1999; 81:870–873.

    PubMed  CAS  Google Scholar 

  46. Krüger W, Jung R, Kröger N, Gutensohn K, Fiedler W, Neumaier M et al. Sensitivity of assays designed for the detection of disseminated epithelial tumour cells is influenced by cell separation methods. Clin Chem. 2000; 46:435–436.

    PubMed  Google Scholar 

  47. Krismann M, Todt B, Schroder J, Gareis D, Muller KM, Seeber S et al. Low specificity of cytokeratin 19 reverse transcriptase-polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination. J Clin Oncol. 1995; 13:2769–2775.

    PubMed  CAS  Google Scholar 

  48. Zippelius A, Kufer P, Honold G, Kollermann MW, Oberneder R, Schlimok G et al. Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol. 1997; 15:2701–2708.

    PubMed  CAS  Google Scholar 

  49. Krüger W, Datta C, Badbaran A, Tögel F, Gutensohn K, Carrero I et al. Immunomagnetic tumour cell selection — implications for the detection of disseminated cancer cells. Transfusion. 2000; 40:1489–1493.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Krüger, W.H. (2003). Technical Aspects of the Detection of Disseminated Tumour Cells by Molecular Methods. In: Pantel, K. (eds) Micrometastasis. Cancer Metastasis - Biology and Treatment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48355-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48355-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1155-9

  • Online ISBN: 978-0-306-48355-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics