Skip to main content

Computer Design and Manufacturing Systems, Techniques and Applications in Biomedical Systems

  • Reference work entry
  • 651 Accesses

15.1 6.1 Introduction

Today, computer techniques are penetrating into almost every branch of engineering in one form or another. Whether in engineering industries or biomedical systems, computers have ever-increasingly become essential tools and are critical prerequisites for research and application. In biomedical systems, computers are applied to generate a graphical representation of the human body or biological macromolecules, or to determine the shape of the cockpit of an aircraft or the replacement of an injured knee. It is obvious that large quantities of data will be input, stored, manipulated, and visualized in any of these cases, which makes computer application in biomedical systems more complicated than some other industrial systems, such as mechanical product design.

The use of computer in biomedical systems has come relatively late as large amounts of computing power and sophisticated graphics are required. The delay of computer application in biomedical engineering is...

This is a preview of subscription content, log in via an institution.

References

  • K. H. Kroemer. Combiman-computerized Bio-mechanical Man-Model. AMRL-TR-72-16, Wright Patterson AFB, OH, 1972.

    Google Scholar 

  • D. Hidson. Computer-aided design and bio-engineering: a review of the literature. Technical note 88-31, Defence research establishment, Ottawa, 1988.

    Google Scholar 

  • M. Ameil, J. F. Delattreet al. Computerized reconstruction of an anatomical structure based on digitized sections. Anat. Clin. 5: 261–264, 1984.

    Article  Google Scholar 

  • S. Batintzsky et al. Three dimensional computer reconstruction of brain lesions from surface contours provided by computed tomography: a prospectus. Neurosurgery 11(1): Part 1, 1982.

    Google Scholar 

  • N. A. Langrana and J. Bronfld. Computer-assistant analysis of ligament constraints in the knee. Clinical Orthopedics and Related Research 196: 42–50, 1985.

    Google Scholar 

  • P. Walker and J. Rovick et al. Computer Graphics looks at the knee: motion monitoring to the total artificial joint. SOMA July: 6–13, 1986.

    Google Scholar 

  • A. Simmons, S. R. Arridge, G. J. Barker and P. S. Tofts. Segmentation of neuroanatomy in magnetic resonance images. Proceedings of SPIE, Medical imaging VI: image processing, February 24–27, Newport Beach, CA, 1992.

    Google Scholar 

  • Amit Chakraborty, Lawrence H. Staib and James S. Duncan. An integrated approach to boundary finding in medical images. Proceedings of the IEEE workshop on biomedical image analysis, June 24–25, Seattle, WA, 1994.

    Google Scholar 

  • E. Keepel. Approximating complex surface by triangulation of contour lines. IBM J. R &D 19: 1975.

    Google Scholar 

  • H. N. Christiansen and T. W. Sederberg. Construction of complex contours line definition into ploygonal element mosaics. Computer Graphics 12(3): 1978.

    Google Scholar 

  • S. Ganapathy and T. G. Dennely. A new general triangulation method for planar contours. Computer Graphics 16(3): 1982.

    Google Scholar 

  • Jean Hsu, M. David Chelberg and F. Charles Babbs. A geometric modeling tool for visualization of human anatomical structure. Proceedings of the IEEE workshop on biomedical image analysis, June 24–25, Seattle, WA, 1994.

    Google Scholar 

  • D. A. Milner and V. C. Vasiliou. Computer-Aided Engineering for Manufacture, pp. 1–125. Biddles Ltd, Guildford, Great Britain, 1986.

    Google Scholar 

  • S. A. Ohr. Computer-Aided Engineering: A Survey of Standards, Trends, and Tools, pp. 1–341. John Wiley and Sons, New York, 1990.

    Google Scholar 

  • H. C. Chua. Quantitative 3-D Anatomy of the Human Vertebrae Asian Population, pp. 1–55. M. Eng 1st Year Internal Report, Nanyang Technological University.

    Google Scholar 

  • M. H. Krag. Spine, 13: 27–32, 1988.

    Article  Google Scholar 

  • E. C. Teo, J. P. Paul and J. H. Evans. J. Med. Biol. Eng. Comput. 32: 236–238, 1994.

    Google Scholar 

  • M. M. Panjabi, V. Goel and T. Oxland. Spine 17: 299–306, 1992.

    Article  Google Scholar 

  • A. B. Schultz, H. LaRocca, J. A. Galante. and T. P. Andriacchi. J. Biomech. 5: 409, 1972.

    Article  Google Scholar 

  • G. Sallant. Orthop. 62(2): 157, 1976.

    Google Scholar 

  • I. Gallo, B. Ruiz. and F. Nistal. Am. J. Cardiol. 53: 1061–1065, 1984.

    Article  Google Scholar 

  • U. Bortolotti, A. Milano. and A. Mazzucco. J. Thorac. Cardio. Surg. 90: 564–569, 1985.

    Google Scholar 

  • C. S. Lim, J. H. Yeo, A Duwani and E. K. W. Sim. Second scientific manufacturing of BES, 30 January, 1999, Singapore: 20.

    Google Scholar 

  • R. Hose and M. M. Black. J. Heart Valve Dis. 4: S50–S54, 1995.

    Google Scholar 

  • S. Reisner and R. Meltzer. J. Am. Soc. Echo. 1: 201–210, 1988.

    Google Scholar 

  • G. T. Herman. J. Comp. Asst. Tomogr. 12: 450–454, 1998.

    Article  Google Scholar 

  • K. S. Kunzelman, R. P. Cochran, E. D. Verrier and R. C. Eberhart, J. Heart Valve Dis. 3: 491–496, 1994.

    Google Scholar 

  • N. J. Mankovich. Proceedings SPIE-Rapid Prototyping 1444: 71–82, 1991.

    Google Scholar 

  • T. M. Healy, A. A. Fontaine, J. T. Ellis, S. P. Walton and A. P. Yoganathan. Experiments in Fluids 25: 512–518, 1998.

    Article  Google Scholar 

  • J. H. Yeo, C. S. Lim, Y. Jiang and J. H. Wang. Computational Fluid Dynamics Simulation of a Bi-Leaflet Heart Valve Using Cray Supercomputer and Silicon Graphics Computer, pp. 1–52. Cray Quest, 1998.

    Google Scholar 

  • S. C. M. Yu, D. N. Ghista and C. S. Lim. Anastomotic Flow and Flow Through Coronary Stents-Internal Report. p. 1. NTU, 1998.

    Google Scholar 

  • K. H. Koh, S. E. Widmalm and W. J. Williams, MPE Research Bulletin NTU, p. 4, 1997.

    Google Scholar 

  • Web Pages on Osteoporosis (Address: http://www.betterhealth.com).

    Google Scholar 

  • W. T. Thomson and M. D. Dahleh. Theory of Vibration with Application 5th edn, pp. 271–273. Prentice Hall, New York, 1993.

    Google Scholar 

  • M. Mori, H. Kurogane, T. Hayashi and Y. Yasaka. Am. J. of Cardiol. 78(5–6): 985–989, 1996.

    Article  Google Scholar 

  • H. J. C. Swan, U. Sigwart. and G. I. Frank. (Eds), Coronary Stents, pp. 1–52. Springer-Verlag, Germany, 1992.

    Book  Google Scholar 

  • A. J. Davidson. US Patent No. 5690670, 1997.

    Google Scholar 

  • L. Chandra, M. Allen, R. Butter, N. Rushton, A. H. Lettington and T. W. Clyne. The Effect of Biological Fluids on the Adhesion of Diamond-Like Carbon Films to Metallic Substrates, Diamond and Related Materials, pp. 852–861, Elsevier Science Publisher B.V., 1995.

    Google Scholar 

  • C. B. Sampson. Textbook of Radiopharmacy, Vol. 3 p. 224. Gordon & Breach Science Publishers, Cambridge, U.K., 1996.

    Google Scholar 

  • R. Beyar. The BeStent, Handbook of Coronary Stent, pp. 153–163. Martin Dunitz Ltd, Rotterdam, 1997.

    Google Scholar 

  • V. Van Stee, J. Tortal, P. A. Williams and S. Saha. S. Biomed. Engg. Conf., pp. 90–91. Proc. IEEE, Piscataway, U.S.A., 1995.

    Google Scholar 

  • M. E. Allam and J. F. Greenleaf. Int. Conf. Acoustics, Speech and Signal Processing pp. 2315–2318. Proc. IEEE v4, Piscataway, U.S.A., 1995.

    Google Scholar 

  • A. G. Houston, S. B. Premkumar, D. E. Pitts and R. J. Babaian. IEEE Symp. Comp.-Based Medical Systems, pp. 94–101. IEEE, Los Alamitos, U.S.A., 1995.

    Google Scholar 

  • A. V. Cideciyan. Registration of ocular fundus images. IEEE Engg. Med. Biology Mag. 14(1): 52–58, 1995.

    Article  Google Scholar 

  • I. J. Hodgkinson, P. B. Greer and A. C. B. Molteno. Point spread function for light scattered in the human ocular fundus. J. Optical Soc. Am. A, Optics & Image Science 11(2): 479–486, 1994.

    Article  Google Scholar 

  • T. Y. Lee and H. D. Cheng. Bioengineering, pp. 54–58. IEEE Proc. NE Conf., U.S.A., 1994.

    Google Scholar 

  • G. Tascini, G. Passerini, P. Puliti and P. Zingaretti. Retina Vascular Network Recognition, pp. 322–329. Proc. of Int. Soc. Optical Eng., Bellinghamn U.S.A., 1993.

    Google Scholar 

  • W. S. Ng and C. K. Tan. Reliability Engineering and Systems Safety 54: 35–45, 1996.

    Article  Google Scholar 

  • P. J. Curtiss, K. L. Kelson and J. P. McGillis. Bioengineering, pp. 41–43. IEEE Proc. NE Conf., Piscataway, U.S.A., 1995.

    Google Scholar 

  • C. S. Lim, C. K. Chua, K. Arichandran, G. T. H. Lim and V. Anantharaman. Int. J. Info. Tech., 3: 87–97, 1997.

    Google Scholar 

  • N. Ayache. Image & Vision Comput. 13(4): 295–313, 1995.

    Article  Google Scholar 

  • P. Dario, E. Guglielmelli and B. Allotta. Robotics in Medicine, pp. 739–752. IEEE Int. Conf. Intell. Robots & Sys., Piscataway, U.S.A., 1994.

    Google Scholar 

  • T. J. Sommer. Comput. Meth. Prog. Biomed. 48(1–2): 73–77, 1995.

    Article  Google Scholar 

  • D. C. Lymberopoulos, K. V. Spiropoulos., G. C. Anastassopoulos., S. A. Kotsopoulos and K. G. Solomou. J. Electronic Imaging 4(11): 84–97, 1995.

    Article  Google Scholar 

  • C. K. Chua, S. M. Chou, W. S. Ng, W. Fang, L. L. Bi, B. T. Sim, S. T. Lee and S. C Aung. MPE Research Bulletin NTU, p. 47, 1998.

    Google Scholar 

  • M. Tuceryan, S. Douglas, R. T. Whitaker, D. E. Breen, C. Crampton, E. Rose and K. H. Ahlers. IEEE Trans. Visual. Comput. Graphics 1(3): 255–273, 1995.

    Article  Google Scholar 

  • M. M. Wloka and B. G. Anderson. Proc. Symp. Interactive 3D Graphics, pp. 5–12, ACM, New York, U.S.A., 1995.

    Book  Google Scholar 

  • M. Bajura and U. Neumann. IEEE Comput. Graphics Appl. 15(5): 52–60, 1995.

    Article  Google Scholar 

  • D. P. Mahoney. Rapid prototyping in medicine. Computer Graphics World 18(2): 42–48, 1995.

    MathSciNet  Google Scholar 

  • B. Swaelens and J. P. Kruth. Medical applications in rapid prototyping techniques, Proceedings of the Fourth International Conference on Rapid Prototyping, June 14, 17: 107–120, 1993.

    Google Scholar 

  • A. Jacobs, B. Hammer, G. Niegel, T. Lambrecht, H. Schiel, M. Hunziker and W. Steinbrich. First experience in the use of stereolithography in medicine. Proceedings of the Fourth International Conference on Rapid Prototyping, June 14–17: 121–134, 1993.

    Google Scholar 

  • J. Adachi, T. Hara, N. Kusu and H. Chiyokura. Surgical simulation using rapid prototyping. Proceedings of the Fourth International Conference on Rapid Prototyping, June 14–17, pp. 135–142, 1993.

    Google Scholar 

  • M. Koyayashi, T. Fujino, H. Chiyokura and T. Kurihara. Preoperative preparation of a hydroxyapatite prosthesis for bone defects using a laser-curable resin model. The Inaugural Congress of the International Society for Simulation Surgery, 1992.

    Google Scholar 

  • T. Kaneko, M. Kobayashi, Y. Tsuchiya, T. Fujino, M. Itoh, M. Inomata, M. Uesugi, K. Kawashima, T. Tanijiri and N. Hasegawa. Free surface 3-dimensional shape measurement system and its application to Mictotia ear reconstruction. The Inaugural Congress of the International Society for Simulation Surgery, 1992.

    Google Scholar 

  • K. Y. Chow. Development of a direct link between a laser digitiser and a rapid prototyping system. Final year thesis, Nanyang Technological University, Singapore, 1996.

    Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Computer Design and Manufacturing Systems, Techniques and Applications in Biomedical Systems. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics