Skip to main content

Occurrence, Characteristics, Transport, and Fate of Pesticides, Pharmaceuticals, Industrial Products, and Personal Care Products at Riverbank Filtration Sites

  • Chapter
Riverbank Filtration

Conclusions

Organic compounds potentially can be transported from the river to riverbank-filtered water into public-water supplies. On a global scale, the total production of organic compounds, such as pesticides, pharmaceuticals, and personal care products, has increased during the last few decades. This increased production and load has increased the presence of these products and their degradates in rivers. On the other hand, the use of riverbank-filtered water is still increasing in many nations. For a long time, the interaction between the river and aquifer had not been recognized, but this interaction has received much more attention in the last two decades. People used to believe that aquifer media could filter out all potentially harmful components. As our knowledge about the occurrence, transport, and fate of organic compounds has increased over time and our analytical techniques have improved from parts per million, to parts per billion, down to parts per trillion concentrations, concerns about the presence of organic compounds in our drinking water and their effect on public health also have increased.

Nevertheless, the potential for the development of RBF worldwide as a pretreatment technology for drinking water is great and has been used successfully in the United States, Germany, and other countries for many years, decades, or even more than a century. If utilities develop effective monitoring networks and programs, have a good understanding of their hydrogeologic settings, including travel times and removal potential, and have an early warning system in place, RBF can be an effective tool to reduce the cost of alternative drinking-water treatment technologies, such as ultrafiltration, ozonation, and the use of activated carbon, for the reduction or removal of most organic compounds. As discussed in this section, a few organic compounds cannot be removed or can be partially removed by RBF. Several of these compounds, such as atrazine, alachlor ESA, EDTA, or selected pharmaceuticals, may be used as organic tracer compounds to evaluate contamination risks and the necessity of further protective actions. The organic tracer compounds also may be used to optimize the individual RBF process. If the occurrence of these compounds in drinking water is neither desired nor permitted by law, a multibarrier drinking-water treatment process may be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, C., K. Meleady, and L. Wallace (1989). ‘Pesticide residues in drinking water in the north coast region of New South Wales, Australia, 1986–87.’ Bulletin of Environmental Contamination and Toxicology, 42: 595–602.

    Article  CAS  Google Scholar 

  • Arnold, S.F., D.M. Klotz, B.M. Collins, P.M. Vonier, L.J. Guillette, and J.A. McLachlan (1996). ‘Synergistic activation of estrogen receptor with combinations of environmental chemicals.’ Science, 272: 1489–1492.

    CAS  Google Scholar 

  • Arzneibüro der Bundesvereinigung Deutscher Apothekerverbände (ADBA) (2000). Pharmazeutische Stoffliste (List of pharmaceutical compounds). Werbe-und Vertriebsgesellscheft, Deutscher Apotheker, Frankfurt, Germany.

    Google Scholar 

  • Aspelin, A.L., A.H. Grube, and R. Toria (1992). Pesticide industry sales and usage: 1990 and 1991 market estimates. U.S. Environmental Protection Agency, Washington D.C., 37 p.

    Google Scholar 

  • Avdeef, A., K.J. Box, J.E.A. Comer, C. Hibbert, and K.Y. Tam (1998). ‘pH-metric logP 10: Determination of liposomal membrane-water partitioning coefficients of ionizable drugs.’ Pharmaceutical Research, 15(2): 209–215.

    Article  CAS  Google Scholar 

  • Barbash, J.E., and E.A. Resek (1996). ‘Pesticides in groundwater — Distribution, trends, and governing factors.’ Pesticides in the hydrologic system, U.S. Geological Survey Water Quality Assessment, Volume 2, R.J. Gilliom, ed., Ann Arbor Press, In., Ann Arbor, Michigan, 588 p.

    Google Scholar 

  • Barber, L.B., G.K. Brown, and S.D. Zaugg (2000a). ‘Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water.’ Analysis of environmental endocrine disruptors, L.H. Keith, T.L. Jones-Lepp, L.L. Needham, eds., American Chemical Society, Washington D.C., 97–124.

    Google Scholar 

  • Barber, L.B., G.K. Brown, D.W. Kolpin, J.H. Writer, and S.D. Zaugg (2000b). ‘A reconnaissance for hormone compounds in the surface waters of the United States.’ Proceedings, Effects of Animal Feeding Operations on Water Resources and the Environment, F.D. Wilde, L.J. Britton, C.V. Miller, and D.W. Kolpin, eds., U.S. Geological Survey Open-File Report 00-204, U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Beer, A.J. (1997). ‘Something in the water.’ tBiologist, 44(2): 296.

    Google Scholar 

  • Belgaqua and Phytofar (1999). Groenbook (Green book), Belgaqua and Phytofar, Belgium, 48 p.

    Google Scholar 

  • Biologische Bundesanstalt für Land-und Forstwirtschaft (1995). Verzeichnis der Wirkstoffe in zugelassenen Pflanzenschutzmitteln (List of active substances of permitted pesticides). Biologische Bundesanstalt für Land-und Forstwirtschaft, Braunschweig, Germany.

    Google Scholar 

  • Boyd, R.A. (1999). ‘Herbicides and herbicide degradates in shallow ground water and the Cedar River near a municipal well field, Cedar Rapids, Iowa.’ Proceedings, Contamination of Hydrologic Systems and Related Ecosystems, D.W. Morganwalp and H.T. Buxton, eds., U.S. Geological Survey Water Resources Investigative Report 99-4018B, U.S. Geological Survey, Reston, Virginia, 289–300.

    Google Scholar 

  • Boyd, R.A. (2000). ‘Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa.’ The Science of the Total Environment, 248: 241–253.

    Article  CAS  Google Scholar 

  • Brauch, H.J., F. Sacher, E. Denecke, and T. Tacke (2000). ‘Wirksamkeit der Uferfiltration fuer die Entfernung von polaren organischen Spurenstoffen’ (Efficiency of bank filtration for the removal of polar organic tracer compounds). Gas-und Wasserfach Wasser/Abwasser 14(1/4): 226–234.

    Google Scholar 

  • Budavari, S. (1996). The Merck Index, Whitehouse Station, Rahway, New Jersey, 1741 p.

    Google Scholar 

  • Burkart, M.R., and D.W. Kolpin (1993). ‘Hydrogeologic and land use factors associated with herbicide and nitrate occurrence in near-surface aquifers.’ Journal of Environmental Quality, 22: 646–656.

    CAS  Google Scholar 

  • Burkart, M.R., D.W. Kolpin, and D.E. James (1999a). ‘Assessing groundwater vulnerability to agrichemical contamination in the Midwest U.S.’ Water Science and Technology, 39(3): 103–112.

    Article  CAS  Google Scholar 

  • Burkart, M.R., D.W. Kolpin, R.J. Jaquis, and K.J. Cole (1999b). ‘Groundwater quality: Agrichemicals in groundwater of the midwestern USA: Relations to soil characteristics.’ Journal of Environmental Quality, 28: 1908–1915.

    CAS  Google Scholar 

  • Buser, H.R., T. Poiger, and M.D. Müller (1998). ‘Occurrence and fate of the pharmaceutical drug Diclofenac in surface waters: Rapid photodegradation in a lake.’ Environmental Science and Technology, 32: 3449–3453.

    CAS  Google Scholar 

  • Chaueveheid, E., C. Bertinchamps, and R. Savoir (1999). ‘Evolution des teneurs en micropolluants organiques dans les captages de la Cibe’ (Evolution of the contents of organic micropollution in the capture zones of the Cibe). An article in ‘Les eaux souterraines en region wallonne’ (Groundwater in the Wallonne region of Belgium). F. Edeline, ed., Editions Cebedoc, 600–601 (4–5): 75–83.

    Google Scholar 

  • Chiou, C.Y., D.W. Schmedding, and M. Manes (1982). ‘Partitioning of organic compounds in octanol-water systems.’ Environmental Science and Technology, 16: 79–105.

    Google Scholar 

  • Crites, R.W. (1985). ‘Micropollutant removal in rapid infiltration.’ Artificial recharge of groundwater, T. Asano, ed., Butterworth Publishers, Boston, Massachusetts.

    Google Scholar 

  • Daughton, C.G., and T.A. Ternes (1999). ‘Pharmaceuticals and personal care products in the environment: Agents of subtle change?’ Environmental Health Perspective, 107(6): 907–938.

    CAS  Google Scholar 

  • Djuangsih, N. (1993). ‘Understanding the state of river basin management from an environmental toxicology perspective: An example from water.’ The Science of the Total Environment, Supplement 1993. Elsevier Science, Bilthoven, The Netherlands, 283–292.

    Google Scholar 

  • Dreher, J.E., and A. Gunatilaka (1998). ‘Ground water management system in Vienna: An evaluation after three years of operation.’ Artificial recharge of groundwater, J.H. Peters, et al., eds., A.A. Balkema, Rotterdam, The Netherlands, 167–172.

    Google Scholar 

  • Dünnbier, U., T. Heberer, and C. Reilich (1997). ‘Occurrence of bis(chlorophenyl) acetic acid (DDA) in surface and ground water in Berlin.’ Fresenius’ Environmental Bulletin, 6: 753–759.

    Google Scholar 

  • Duncan, D., T.R. Peterson, and J.D. Carr (1991). ‘Atrazine used as a tracer of induced recharge’ Groundwater Monitoring Reviews, 11: 144–150.

    CAS  Google Scholar 

  • Eckhardt, D.A.V., K.K. Hetcher, P.J. Philips, and T.S. Miller (2000). ‘Pesticides and their metabolites in community water-supply wells of central and western New York, August 1999.’ U.S. Geological Survey Water Resources Investigative Report 00-4128, U.S. Geological Survey, Reston, Virginia, 12 p.

    Google Scholar 

  • Edwards, W.M., G.B. Triplett, and R.M. Kramer (1980). ‘A watershed study of glyphosate transport in runoff.’ Journal of Environmental Quality, 9(4): 661–665.

    CAS  Google Scholar 

  • Eschke, H.D., D. Traud, and H.J. Dibowski (1995). “Untersuchungen zu Vorkommen polycylischer Moschus-Duftstotte in verschiedenen Umweltkompartimenten — Nachweis und Analytik mit (GC/MS in Oberflächen-, Ahwässern und Fischen (1. Mitteilung)” (Investigations on the occurrence of polycyclic musk fragrances in different environment compartments — Detection and analysis in surface water, sewage, and fish applying GC-MS). Zeitschriff fuer Umweltchemie und Oekotoxikologie, 6(4): 183–189.

    Google Scholar 

  • Exner, M.E. (1990). “Pesticide contamination of groundwater artificially recharged by farmland runoff.” Groundwater Monitoring Reviews, Winter 1990: 147–159.

    Google Scholar 

  • Fini, A., G. Fazio, and I. Rapaport (1993). “Diclofenac/N-(2-Hydroxymethyl) Pyrrolidine — A new salt for an old drug.” Drugs Under Experimental and Clinical Research, 19(3): 81–88.

    CAS  Google Scholar 

  • Frank, R., B.S. Clegg, C. Sherman, and N.D. Chapman (1990). “Triazine and chloroacetamide herbicides in Sydenham River water and municipal drinking water, Dresden, Ontario, Canada, 1981–1987.” Archives of Environmental Contamination and Toxicology, 19: 319–324.

    Article  CAS  Google Scholar 

  • Fritz, B. (2002). “Untersuchung der Uferfiltration in Bereich der Transekte Tegeler See und Müggelsee.” Ph.D. thesis, Free University, Berlin, Germany, in press.

    Google Scholar 

  • Frycklund, C. (1998). “Long-term sustainability in artificial groundwater recharge.” Artificial recharge of grourdwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands, 113–117.

    Google Scholar 

  • Ghijsen, R.T., and W. Hoogenboezem (2000). Endocrine disrupting compounds in the Rhine and Meuse Basm: Occurrence in surface, process, and drinking water. Sub-project of the National Research Project on the occurrence of endocrine disrupting compounds, De Eendracht, Schiedam, Netherlands, 96 p.

    Google Scholar 

  • Gledhill, W.E., and T.C. Feijtel (1992). “Environmental properties and safety assessment of organic phosphonates used for detergents and water treatment applications.” The handbook of environmental chemistry. Volume 3, O. Hutzinger, ed., Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Gojemrac, T., B. Kartal, M. Zurić, and V. Zidar (1994). “Use of immunoenzyme method (EL1SA) for determination of s-triazine herbicide atrazme residues in drinking water.” Veterinarska Stanica, 25: 75–80 (in Croatian).

    Google Scholar 

  • Grischek, T., W. Nestler, J. Dehnert, and P. Neitzel (1994). “Groundwater/river interaction in the Elbe River in Saxony.” Proceedings, Second International Conference on Groundwater Ecology J.A. Stanford and H.M. Valett, eds., American Water Resources Association, Middleburg, Virginia, 309–318.

    Google Scholar 

  • Grischek, T., P. Neitzel, T. Andrusch, U. Lagois, and W. Nestler (1997). “Fate of EDTA during infiltration of Elbe River water and identification of infiltrating river water in the aquifer.” Vom Wasser, 89: 261–282.

    CAS  Google Scholar 

  • Groshart, C.P., and F. Balk (2000). Biocides. Association of River Waterworks (RIWA), Amsterdam, The Netherlands, 110 p.

    Google Scholar 

  • Halling-Sørensen, B., N. Nielsen, P.F. Lansky, F. Ingerslev, L. Hansen, H.C. Lützhøft, and S.E. Jørgensen (1998). “Occurrence, fate and effects of pharmaceutical substances in the environment: A review.” Chemosphere, 36:357–394.

    Google Scholar 

  • Hansen, R.E. (1970). Geology and groundwater resources of Linn County, Iowa. Iowa Geological Survey Water-Supply Bulletin 10, Des Moines, Iowa, 66p.

    Google Scholar 

  • Hansch, C., D. Hockman, A. Leo, L.T. Zhang, and P. Li (1995). “The expanding role of quantitative structure-activity-relationships (QSAR) in toxicology.” Toxicology Letters, 79(1–3): 45–53.

    CAS  Google Scholar 

  • Heberer, T. (1995). Identifizierung und Quantifizierung von Pestizidrückständen und Umweltkontaminanten in Grund-und Oberflächenwässern mittels Kapillargaschromatographie — Massenspektrometrie (Identificatum and quantification of pesticide residues and environmental contaminants in ground and surface water applying capillary gas chromatography/mass spectrometry). Wissenschaft and Technik Verlag, Berlin, Germany, 437 p.

    Google Scholar 

  • Heberer, T. (2002). “From municipal sewage to drinking water: Occurrence and fate of pharmaceutical residues in the aquatic system of Berlin.” Article in “Attenuation of groundwater pollution by bank filtration,” T. Grischek and K. Hiscock, eds., Journal of Hydrology, in press.

    Google Scholar 

  • Heberer, T., and U. Dünnbicr (1999). “DDT metabolite bis(chlorophenyl) acetic acid: The neglected environmental contaminant.” Environmental Science and Technology, 33: 2346–2351.

    Article  CAS  Google Scholar 

  • Heberer, T., and H.J. Stan (1996). “Vorkommen von polaren organischen Kontaminanten im Berliner Trinkwasser.” Vom Wasser, 86: 19–31.

    CAS  Google Scholar 

  • Heberer, T., and H.J. Stan (1997). “Determination of clofibric acid and N-(Phenylsulfonyl)-sarcosine in sewage, river and drinking water.” International Journal of Environmental Analytical Chemistry, 67: 113–124.

    CAS  Google Scholar 

  • Heberer, T, and H.J. Stan (1998). “Arzneimittelrückstände im aquatischen System.” Wosser und Boden, 50(4): 20–25.

    CAS  Google Scholar 

  • Heberer, T, S. Gramer, and H.J. Stan (1999). “Occurrence and distribution of organic contaminants in the aquatic system in Berlin-Part III: Determination of synthetic musks in Berlin surface water applying solid-phase microextraction (SPME).” Acta Hydrochimca et Hydrobiologica, 27: 150–156.

    CAS  Google Scholar 

  • Heberer, T., K. Schmidt-Bäumler, and H.J. Stan (1998). “Occurrence and distribution of organic contaminants in the aquatic system in Berlin-Part I: Drug residues and other polar contaminants in Berlin surface and groundwater.” Acta Hydrochimica et Hydrobiologica, 26: 272–278.

    Article  CAS  Google Scholar 

  • Heberer, T., U. Dünnbier, C. Reilich, and H.J. Stan (1997). “Detection of drugs and drug metabolites in groundwater samples of a drinking water treatment plant.” Fresenius’ Environmental Bulletin, 6: 438–443.

    CAS  Google Scholar 

  • Heberer T., B. Fuhrmann, K. Schmidt-Bäumler, D. Tsipi, V. Koutsouba, and A. Hiskia (2001). “Occurrence of pharmaceutical residues in sewage, river, ground and drinking water in Greece and Germany.” Pharmaceuticals and personal care products in the environment: Scientific and Regulatory Issues, Symposium Series 79b, C.G. Daughton and T Jones-Lepp, eds., American Chemical Society, Washington, D.C., 70–83.

    Google Scholar 

  • Heitkamp, M.A., W.J. Adams, and L.E. Hallas (1992). “Glyphosate degradation by immobilized bacteria: Laboratory studies showing feasibility for glyphosate removal from wastewater.” Canadian Journal of Microbiology, 38: 921–928.

    CAS  Google Scholar 

  • Henschel, K.P., A. Wenzel, M. Diedrich, and A. Fliedner (1997). “Environmental hazard assessment of pharmaceutical.” Regulatory Toxicology and Pharmacology, 25: 220–225.

    Article  CAS  Google Scholar 

  • Herrmann R., W. Kaa, and R. Bierl (1986). “Organic micropollutant behavior in a river water-groundwater infiltration system.” Proceedings, Conjunctive Water Use: Understanding and Managing Surface Water/Groundwater Interactions, S.M. Gorelick, ed., International Association of Hydrological Sciences, Oxfordshire, United Kingdom, 187–197.

    Google Scholar 

  • Hodiaumont, A., R. Cantallina, and J.M. Compere (1999). “Les eaux souterrainnes de la CILE contexte, captage et qualite” (Groundwater of the CILE, water use and quality). An article in “Les eaux souterraines en region Wallonne” (Groundwater in the Wallonie region of Belgium), F. Edeline, ed., Editions Cebedoc, 600–601 (4–5): 31–50.

    Google Scholar 

  • Holm, J.V., K. Rügge, P.L. Bjerg, and T.H. Christensen (1995). “Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark).” Environmental Science and Technology. 29(5): 1415–1420.

    Article  CAS  Google Scholar 

  • Industrieverband Agrar (2000). Jahresberieht 1999/2000 (Annual Report 1999/2000). Industrieverband Agrar, Frankfurt a.m., Germany.

    Google Scholar 

  • International Association of River Waterworks (RIWA) (1998). Annual report 1998, Part C: The Rhine and Meuse, International Association of River Waterworks (RIWA), Amsterdam, The Netherlands

    Google Scholar 

  • Jani, J.P., C.V. Raiyani, J.S. Mistry, J.S. Patel, N.M. Desai, and S.K. Kashyap (1991). “Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in drinking water of Ahmedabad City, India.” Bulletin of Environmental Contamination and Toxicology, 47: 381–385.

    Article  CAS  Google Scholar 

  • Jüttner, F. (1999). “Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons.” Water Science and Technology, 40(6): 123–128.

    Google Scholar 

  • Kalajzic, T., M. Bianchi, H. Muntau, and A. Kettrup (1998). “Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the sediments of an Italian drinking water reservoir.” Chemosphere, 36(7): 1615–1625.

    Article  CAS  Google Scholar 

  • Kalkhoff, S.J., D.W. Kolpin, E.M. Thurman, I. Ferrer, and D. Barcélo (1998). “Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters.” Environmental Science and Technology, 32(11): 1738–1740.

    Article  CAS  Google Scholar 

  • Karickhoff, S.W., D.S. Brown, and T.A. Scott (1979). “Sorption of hydrophobic pollutants on natural sediments.” Water Research, 13:241–248.

    Article  CAS  Google Scholar 

  • Kolpin, D.W. (1997). “Agricultural chemicals in groundwater of the Midwestern United States: Relations to land use.” Journal of Environmental Quality, 26: 1025–1037.

    CAS  Google Scholar 

  • Kolpin, D.W., J.E. Barbash, and R.J. Gilliom (1998). “Occurrence of pesticides in shallow groundwater in the United States: Initial results from National Water Quality Assessment Program.” Environmental Science and Technology, 32: 558–566.

    Article  CAS  Google Scholar 

  • Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T Buxton (2002). “Pharmaceuticals, hormones, and other emerging contaminants in U.S. streams, 1999–2000: Methods, development, and national reconnaissance.” Environmental Science and Technology, in press.

    Google Scholar 

  • Kolpin, D.W., D.A. Goolsby, and E.M. Thurman (1995). “Pesticides in near-surface aquifers: An assessment using highly sensitive analytical methods and tritium.” Journal of Environmental Quality, 24: 1125–1132.

    CAS  Google Scholar 

  • Kolpin, D.W., D. Riley, M.T. Meyer, P. Weyer, and E.M. Thurman (2000). “Pharm-Chemical contamination: Reconnaissance for antibiotics in Iowa streams, 1999.” Proceedings, effects of animal feeding operations on water resources and the environment. F.D. Wilde, L.J. Britton, C.V. Miller, and D.W. Kolpin, eds., U.S. Geological Survey, Open-File Report 00-204, U.S. Geological Survey, Reston, Virginia, 41 p.

    Google Scholar 

  • Kolpin, D.W., E.M. Thurman, and D.A. Goolsby (1996). “Occurrence of selected pesticides and their metabolites in near-surface aquifers of the Midwestern United States.” Environmental Science and Technology, 30: 335–340.

    Article  CAS  Google Scholar 

  • Kruhm-Pimpl, M. (1993). “Pesticides in surface water — Analytical results for drinking water reservoirs and bank filtrate-waters.” Acta Hydrochimica et Hydrobiologica, 21(3): 145–152.

    CAS  Google Scholar 

  • Kühn, W., and U. Müller (2000). “River bank filtration — An overview.” Journal American Water Works Association, December 2000: 60–69.

    Google Scholar 

  • Kuhlmann, B., B. Kaczmarczyk and U. Schottler (1995). “Behavior of phenoxyacetic acids during underground passage with different redox zones.” International Journal of Environmental Analytical Chemistry, 58: 199–205.

    Google Scholar 

  • Lange, F.T., R. Furrer, and H.J. Brauch (2000). Polar aromatic sulfonates and their relevance to waterworks. De Eendracht, Schiedam, Netherlands, 70 p.

    Google Scholar 

  • Lindner, K., T. Knepper, F. Karrenbrock, O. Rörden, H.J. Brauch, F.T. Lange, and F. Sacher (1996). Erfassung und Identifizierung von trinkwassergängigen Einzelsubstanzen in Abwässern und im Rhein (Detection and identification of individual compounds relevant for drinking water supply in sewage effluents and in the Rhine River). IAWR-Rheinthemen 1, GEW, self-published, Köln, Germany.

    Google Scholar 

  • Lindsey, M.E., and E.M. Thurman (2000). “Extraction of select antibiotics from agricultural wastes.” Proceedings, 220th American Chemical Society Meeting, American Chemical Society, Washington D.C.

    Google Scholar 

  • Marei, A.S.M., J.M.E. Quirke, G. Rinaldiz, J.A. Zoro, and G. Eglinton (1978). “The environmental fate of DDT.” Chemosphere, 12:993–998.

    Google Scholar 

  • Matthess, G., E. Bedbur, H. Dunkelberg, K. Haberer, K. Hurle, F.H. Frimmel, R. Kurz, D. Klotz, U. Müller-Wegener, A. Pekdeger, W. Pestemer, and I. Scheunert (1997). Transport-und Abbauverhalten von Pflanzenschutzmitteln im Sicker-und Grundwasser (Transport and degradation behavior of pesticides in the vadose zone and in groundwater). Fischer, New York, New York.

    Google Scholar 

  • Matthess, G., and A. Pekdeger (1985). “Survival and transport of pathogenic bacteria and viruses in ground water.” Ground Water Quality, C.H. Ward, W. Giger, and P.I. McCarty, eds., Wiley, New York, New York.

    Google Scholar 

  • Mathys, W. (1994). “Pestizidbelastungen von Grund-und Trinkwässern dutch die Prozesse der ‘künstlichen Grundwasseranreicherung’ oder der Uferfiltration: Unterschätzte Kontaminationsquellen” (Pesticide pollution of ground and public drinking waters caused by artificial groundwater recharge or bank filtration: Underestimated sources for water contamination). Zentralblatt für Hygiene und Umweltmedizin, 196(4): 338–359.

    CAS  Google Scholar 

  • Mazounie, P., D. D’Arras, and E. Brodard (2000). “Surveillance et contrôle des pesticides: Le point de vue ďun exploitant, Lyonnais des Eaux” (Monitoring and control of pesticides: The operation approach of Lyonnaise des Eaux). Hydrogéologie, 1: 7–11.

    Google Scholar 

  • McCarthy, J.F., and J.M. Zachara (1989). “Subsurface transport of contaminants.” Environmental Science and Technology, 23(5): 496–502.

    CAS  Google Scholar 

  • Meitzler, L, P. Schmellenkamp, I. Schill, and F. Schredelseker (1996). “Bentazon als Uferfiltrattracer” (Bentazone as a tracer for bank filtrate). Vom Wasser, 87: 163–170.

    CAS  Google Scholar 

  • Meyer, M.T., J.E. Bumgarner, J.V. Daughtridge, D.W. Kolpin, E.M. Thurman, and K.A. Hosteller (2000). “Occurrence of antibiotics in liquid waste at confined animal feeding operations and in surface and ground water.” Proceedings, effects of animal feeding operations on water resources and the environment, F.D. Wilde, L.J. Britton, C.V. Miller, and D.W. Kolpin, eds., U.S. Geological Survey Open-File Report 00-204, U.S. Geological Survey, Reston, Virginia, 45 p.

    Google Scholar 

  • Meylan, W.M., and P.H. Howard (1995). “Atom/fragment contribution method for estimating octanol-water partition coefficients.” Journal of Pharmaceutical Science, 94: 83–92.

    Google Scholar 

  • Meylan, W.M., P.H. Howard, and R.S. Boethling (1996). “Improved method for estimating water solubility from octanol water partition coefficient.” Environmental Toxicology and Chemistry, 15(2): 100–106.

    Article  CAS  Google Scholar 

  • Moeder, M., S. Schrader, M. Winkler, and P. Popp (2000). “Solid-phase microextraction-gas chromatography-mass spectrometry of biologically active substances in water samples.” Journal of Chromatography A, 873: 95–106.

    Article  CAS  Google Scholar 

  • Möhle, E., S. Horvath, W. Merz, and J.W. Metzger (1999). “Bestimmung von schwer abbaubaren organischen Verbindungen im Abwasser-Identifizierung von Arzneimittelrückständen — Identifizierung von Arzneimittelrückständen” (Determination of hardly degradable organic compounds in sewage water — Identification of pharmaceutical residues). Vom Wasser, 92: 207–223.

    Google Scholar 

  • Mons, M.N., J. Van Genderen, and A.M. Van Dijk-Looijaard (2000). Inventory on the presence of Pharmaceuticals in Dutch water. Kiwa N.V., Nieuwegein, The Netherlands, 39 p.

    Google Scholar 

  • Neely, W.B., and G.E. Blau (1985). Environmental exposure from chemicals. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Nondek, L., and N. Frolikova (1991). “Polychlorinated byphenyls in the hydrosphere of Czechoslovakia.” Chemosphere, 23(3): 269–280.

    Article  CAS  Google Scholar 

  • Notenboom, J., A. Verschoor, A. Van der Linden, E. Van de Plassche, and C. Reuther (1999). “Pesticides in groundwater — Occurrence and ecological impacts.”National Institute of Public Health and the Environment (RIVM) Report 601506002, Bilthoven, The Netherlands, 77 p.

    Google Scholar 

  • Pereira, W.E., F.D. Hostettler, and J.B. Rapp (1996). “Distributions and fate of chlorinated pesticides, biomarkers, and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point-source in San Francisco Bay, California.” Marine Environmental Resources, 41: 299–314.

    CAS  Google Scholar 

  • Perkow, W. (1992). Wirksubstanzen der PflanzenschutZ’ und Schädlingsbekämpfungsmittel, Second Edition (Active substances of pesticides, Second Edition). Blackwell Wissenschafts-Verlag/Parey Buchverlag, Berlin, Germany.

    Google Scholar 

  • Preuss, G., N. Zullei-Seibert, J. Nolte, and B. Grass (1998). Verhalten von Pflanzenbehandlungs-und Schaedlingsbekaempfungsmitteln in Sicker-und Grundwasser unter definierten Randbedingungen (Behavior of pesticides during infiltration and artificial groundwater recharge under defined environmental conditions). Umweltbundesamt Texte (German Environmental Agency), Berlin, Germany, 125 p.

    Google Scholar 

  • Prior, J.C. (1991). Landforms of Iowa. University of Iowa Press, Iowa City, Iowa, 153 p.

    Google Scholar 

  • Quensen, J.F III, S.A. Mueller, M.K. Jain, and J.M. Tiedje (1998). “Reductive dechlorination of DDE to DDMU in marine sediment microsomes.” Science, 280: 722–724.

    CAS  Google Scholar 

  • Rafols, C., M. Roses, and E. Bosch (1997). “A comparison between different approaches to estimate the aqueous pKa of several non-steroidal anti-inflammatory drugs.” Analytica Chimica Acta, 338: 127–134.

    CAS  Google Scholar 

  • Ray, C., T. Grischek, J. Schubert, J.Z. Wang, and T.F. Speth (2002). “A perspective of riverbank filtration.” Journal of American Water Works Association, in press.

    Google Scholar 

  • Ray, C., T.W.D. Soong, G.S. Roadcap, and D.K. Borah (1998). “Agricultural chemicals: Effects on wells during floods.” Journal of American Water Work Association, 90: 90–100.

    CAS  Google Scholar 

  • Renner, R. (1998). “‘Natural’ remediation of DDT, PCBs debated.” Environmental Science and Technology, 32: 60A–363A.

    Google Scholar 

  • Roberts, P.V. (1985). “Field observations of organic contaminant behavior in the Palo Alto Baylands.” Artificial recharge of groundwater, T. Asano, ed., Butterworth Publishers, Boston, Massachusetts.

    Google Scholar 

  • Roger, M., and U. Fontanelle (1999). “Evolution des nitrates et des pesticides dans les captages de la S.W.D.E.” (Evolution of nitrates and pesticides in water from the S.W.D.E. well fields). In an article on “Les eaux souterraines en region Wallonne (Groundwater in the Wallonne region of Belgium), F. Edeline, ed., Editions Cebedoc, 600–601 (4–5): 63–73.

    Google Scholar 

  • Schaffner, C., M. Ahel, and W. Giger (1987). “Field studies on the behaviour of organic micropollutants during infiltration of river water to groundwater.” Water Science and Technology, 19: 1195–1196.

    CAS  Google Scholar 

  • Scheytt, T. (2002). Arzneimittel in Grundwasser — Eintrag, Abbau, und Transport (Pharmaceuticals in ground water — Input, degradation, and transport). Ph.D. thesis, Technical University of Berlin, Berlin, Germany, 148 p.

    Google Scholar 

  • Scheytt, T., S. Grams, and H. Fell (1998). “Occurrence and behaviour of drugs in ground-water.” Gambling with groundwater — Physical, chemical, and biological aspects of aquifer-stream relations, J.V. Brahana, Y. Eckstein, L.K. Ongley, R. Schneider, and J.E. Moore, eds., IAH/AIH Proceedings Volume, St. Paul, Minnesota, 13–18.

    Google Scholar 

  • Scheytt, T., M. Leidig, P. Mersmann, and T. Heberer (2002). “Natural attenuation of pharmaceuticals.” Ground Water, in preparation.

    Google Scholar 

  • Schulmeyer, P.M. (1991). “Relation of selected water-quality constituents to river stage in the Cedar River, Iowa.” Proceedings, U.S. Geological Survey Toxic Substances Hydrology Program, U.S. Geological Survey, Reston, Virginia, 227–231.

    Google Scholar 

  • Schulmeyer, P.M., and D.J. Schnoebelen (1998). “Hydrogeology and water quality in the Cedar Rapids Area, Iowa, 1992–96.” U.S. Geological Survey Water Resources Investigative Report 97-4261, U.S. Geological Survey, Reston, Virginia, 77 p.

    Google Scholar 

  • Schwarzenbach, R.P., W. Giger, E. Hoehn, and J.K. Schneider (1983). “Behavior of organic compounds during infiltration of river water to groundwater: Field studies.” Environmental Science and Technology, 17: 472–479.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R.P., and W. Giger (1985). “Behaviour and fate of halogenated hydrocarbons in groundwater.” Ground water quality, C.H. Ward, W. Giger, and P.L. McCarty, eds., Wiley, New York, New York, 446–471.

    Google Scholar 

  • Schweinsberg, E, W. Abke, K. Rieth, U. Rohmann, and N. Zullei-Seibert (1999). “Herbicide use on railway tracks for safety reasons in Germany.” Toxicology Letters, 107: 201–205.

    Article  CAS  Google Scholar 

  • Sen Stadt Um (Senatsverwaltungfür Stadtentwicklung und Umweltschutz) (1997). Berlin digital atlas, Second Edition. Kulturbuchverlag, Berlin, Germany. Free online access: www.sensut.berlin.de/sensut/umwelt/uisonline/dua96/html/edua_index.shtml.

    Google Scholar 

  • Siegener, R., and R.F. Chen (2000). “Detection of pharmaceuticals entering Boston Harbor.” Analysis of environmental endocrine disruptors, L.H. Keith, T.L. Jones-Lepp, L.L. Needham, eds., American Chemical Society, Washington D.C.

    Google Scholar 

  • Seiler, R.L., S.D. Zaugg, J.M. Thomas, and D.L. Howcroft (1999). “Caffeine and pharmaceuticals as indicators of wastewater contamination in wells.” Ground Water, 37(3): 405–410.

    Article  CAS  Google Scholar 

  • Skark, C., and N. Zullei-Seibert (1995). “The occurrence of pesticides in groundwater: Results of case-studies.” International Journal of Analytical Chemistry, 58: 387–96.

    CAS  Google Scholar 

  • Smith, N.J., R.C. Martin, and R.G. St. Croix (1996). “Levels of the herbicide glyphosate in well water.” Bulletin of Environmental Contamination and Toxicology, 57: 759–765.

    Article  CAS  Google Scholar 

  • Sontheimer, H. (1980). “Experience with riverbank filtration along the Rhine River.” Journal American Water Works Association, December 1980: 386–390.

    Google Scholar 

  • Spliid, N.H., and B. Køppen (1998). “Occurrence of pesticides in Danish shallow groundwater” Chemosphere, 37(7): 1307–1316.

    Article  CAS  Google Scholar 

  • Stan, H.J., and T. Heberer (1997). “Pharmaceuticals in the aquatic environment.” Article in a Special Issue on “Dossier water analysis,” M.J.F. Suter, ed., Analysis, 25: M20–23.

    Google Scholar 

  • Stan, H.J., and M. Linkerhägner (1992). “Identifizierung von 2-(4-Chlorphenoxy)-2-methyl-propionsäure im Grundwasser mittels Kapillar-Gaschromatographie mit Atomemissionsdetektion und Massenspektrometrie” (Identification of 2-[4-chlorophenoxy]-2-methyl-propionic acid in ground water using capillary-gas chromatography with atomic emission detection and mass spectrometry). Vom Wosser, 79: 75–88.

    CAS  Google Scholar 

  • Stan, H.J., T. Heberer, and M. Linkerhagner (1994). “Vorkommen von Clofibrinsäure im aquatischen System: Führt die therapeutische Anwendung zu einer Belastung von Oberflächen-, Grund-und Trinkwasser?” (Occurrence of clofibric acid in the aquatic system: Is their therapeutic use responsible for the loads found in surface, ground-and drinking water?). Vom Wosser, 83: 57–68.

    CAS  Google Scholar 

  • Steele, G.V., and I.M. Verstraeten (1999). “Effects of pumping collector wells on river-aquifer interaction at Platte River Island near Ashland, Nebraska, 1998.” U.S. Geological Survey Water Resources Investigative Report 99–4161, U.S. Geological Survey, Reston, Virginia, 6 p.

    Google Scholar 

  • Stuer-Lauridsen, F., M. Birkved, L.P. Hansen, H.C. Holten Lützhoft, and B. Halling-Sorensen (2000). “Environmental risk assessment of human pharmaceuticals in Denmark after nonnal therapeutic use.” Article in a special issue on “Drugs in the Environment,” S.E. Jorgensen and B. Halling-Sorensen, eds., Chemosphere, 40 (2000): 759–765.

    Google Scholar 

  • Stuyfzand, P.J. (1989). “Hydrology and water quality aspects of Rhine bank groundwater in the Netherlands.” Journal of Hydrology, 106(3/4): 341–363.

    CAS  Google Scholar 

  • Stuyfzand, P.J. (1998a). “Fate of pollutants during artificial recharge and bank filtration.” Artificial recharge of groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Stuyfzand, P.J. (1998b). “Simple models for reactive transport of pollutants and main constituents during artificial recharge and bank filtration.” Artificial recharge of groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Syracuse Science Center (2000). Database of experimental octanol-ivater partition coefficients (Log P). Syracuse Research Corporation, Syracuse, New York, http://www.syrres.com

    Google Scholar 

  • Szabo Z., D.E. Rice, T. Ivahnenko, and E.F. Vowinkel (1994). “Delineation of the distribution of pesticides and nitrate in an unconfined aquifer in the New Jersey coastal plain by flow-path analysis.” Proceedings, Fourth National Conference on Pesticides: New Directions in Pesticide Research, Development, Management, and Policy, Virginia Polytechnic Institute and State University Water Resources Center, Blacksburg, Virginia.

    Google Scholar 

  • Taets, C., S. Aref, and A.L., Rayburn (1998). “The clastogenic potential of triazine herbicide combinations found in potable water supplies.” Environmental Health Perspectives, 106(4): 197–201.

    CAS  Google Scholar 

  • Taylor, A.W., and W.F. Spencer (1990). “Volatilization and vapor transport processes.” Pesticides in the soil environment: Processes, impacts, and modeling, H.H. Cheng, ed., SSSA Book Series 2, Madison, Wisconsin, 213–269.

    Google Scholar 

  • Taylor, A.G. (1994). “Pesticides in the Illinois public water supplies: A year of compliance monitoring.” Proceedings, Illinois Agriculture Pesticides Conference 1994, Philips Brothers, Urbana, Illinois, 94–99.

    Google Scholar 

  • Ternes, T.A. (1998). “Occurrence of drugs in German sewage treatment plants and rivers.” Water Resources, 32:3245–3260.

    CAS  Google Scholar 

  • Ternes, T.A., P. Kreckel, and J. Mueller (1999b). “Behavior and occurrence of estrogens in municipal sewage treatment plants — II. Aerobic batch experiments with activated sludge.” The Science of the Total Environment, 225: 91–99.

    CAS  Google Scholar 

  • Thurman, E.M., D.A. Goolsby, M.T. Meyer, and D.W. Kolpin (1991). “Herbicides in surface waters of the Midwestern United States: The effect of spring flush.” Environmental Science and Technology, 25: 1784–1796.

    Article  Google Scholar 

  • Thurman, E.M., and K.A. Hostetler (2000). “Analysis of tetracycline and sulfamethazine antibiotics in ground water and animal-feedlot wastewater by high-performance liquid chromarography/mass spectromerry using positive-ion electrospray.” Proceedings, Effects of animal feeding operations on water resources and the environment, F.D. Wilde, L.J. Britton, C.V. Miller, and D.W. Kolpin, eds., U.S. Geological Survey Open-File Report 00-204, U.S. Geological Survey, Reston, Virginia, 47 p.

    Google Scholar 

  • Thurman, E.M., and M.E. Lindsey (2000). Transport of antibiotics in soil and their potential for ground-water contamination. Society of Environmental Toxicology and Chemistry meeting, Brussels, Belgium.

    Google Scholar 

  • Tsipi, D., and A. Hiskia (1996). “Organochlorine pesticides and triazines in the drinking water of Athens.” Bulletin of Environmental Contamination and Toxicology, 57: 250–257.

    Article  CAS  Google Scholar 

  • Umweltbundesamt (UBA) (1996). Sachstandsbericht zu Auswirkungender Anwendung von Clofibrinsäure und anderen Arzneimitteln auf die Umwelt und die Trinkwasserversorgung (Report on the the effects of the application of clofibric acid and other pharmaceutical on the environment and drinking water supplies). Umweltbundesamt (German Environmental Protection Agency), Berlin, Germany.

    Google Scholar 

  • Umweltbundesamt (UBA) (2000). Annual Report 1999. Umweltbundesamt (German Environmental Protection Agency), Berlin, Germany.

    Google Scholar 

  • Upham, B.L., B. Boddy, X. Xing, J.E. Trosko, and S.J. Masten (1997). “Non-genotoxic effects of selected pesticides and their disinfection by-products on gap junctional intercellular communication.” Ozone Science and Engineering, 19:351–369.

    CAS  Google Scholar 

  • U.S. Department of Agriculture (1976). Iowa-Cedar Rivers basin study. U.S. Department of Agriculture, Des Moines, Iowa.

    Google Scholar 

  • U.S. Environmental Protection Agency (1989). Guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. U.S. Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency (1991). Maximum contaminant levels (subpart B of pan 141, National primary drinking water regulations): U.S. CFR, Title 40, parts 100–149, U.S. Environmental Protection Agency, Washington, D.C., 659–660.

    Google Scholar 

  • U.S. Environmental Protection Agency (1994). Drinking water regulations and health advisories. U.S. Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency (1996). CT Compliance regulations: U.S. CFR, Title 40, parts 100–149, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Van Genderen, J., M.N. Mons, and J.A. Van Leerdam (1999). Inventory and toxicological evaluation of organic micropollutants — Revision 1999. De Eendracht, Schiedam, Netherlands, 160 p.

    Google Scholar 

  • Van Hoorick, M., J. Feyen, and L. Pussemier (1998). “Experimental and numerical analysis of atrazine behaviour in an artificial recharge site.” Artificial recharge of groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Vasconcelos, J., and S. Harris (1992). Consensus method for determining groundwaters under the direct influence of surface water using microscopic paniculate analysis. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Verstraeten, I.M., and M.J. Ellis (1994). “Reconnaissance of the ground-water quality in the Papio-Missouri River Natural Resources District, northeastern Nebraska, June–September 1992.” U.S. Geological Survey Water Resources Investigative Report, 94-4197, U.S. Geological Survey, Reston, Virginia, 90 p.

    Google Scholar 

  • Verstraeten, I.M., and J.G. Minovsky (1999). “Herbicide removal through bank filtration using horizontal collector wells at Ashland, Nebraska, United States.” Proceedings, International Riverbank Filtration Conference, National Water Research Institute, Fountain Valley, California.

    Google Scholar 

  • Verstraeten, I.M., M.J. Soenksen, G.B. Engel, and L.D. Miller (1999a). “Determining travel time and stream mixing using tracers and empirical equations.” Journal of Environmental Quality 28(5): 1387–1395.

    CAS  Google Scholar 

  • Verstraeten, I.M., E.M. Thurman, E.C. Lee, and R.D. Smith (2002). “Degradation of triazines and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply.” Journal of Hydrology, Special issue on bank filtration, in press.

    Google Scholar 

  • Verstraeten, I.M., D.T. Lewis, D.L. McCallister, A. Parkhurst, and E.M. Thurman (1996). “Influence of landscape position and irrigation on alachlor, atrazine, and selected degradates in selected upper regolith and associated shallow aquifers in northeastern Nebraska.” American Chemical Society Symposium Series 630: Herbicide metabolites in surface water and groundwater. M.T. Meyer and E.M. Thurman, eds., American Chemical Society, Washington, D.C., 178–197.

    Google Scholar 

  • Verstraeten, I.M., J.D. Carr, G.V. Steele, E.M. Thurman, and D.F. Dormedy (1999b). “Surface-water/ground-water interaction: Herbicide transport into municipal collector wells.” Journal of Environmental Quality, 28(5): 1396–1405.

    CAS  Google Scholar 

  • Wahl, K., and B.J. Bunker (1986). “Hydrology of carbonate aquifers in southwestern Linn County and adjacent parts of Benton, Iowa, and Johnson Counties, Iowa.” Bulletin 15, Iowa Geological Survey Water Supply, Dos Moines, Iowa, 56 p.

    Google Scholar 

  • Wang, W., and P. Squillace (1994). “Herbicide interchange between a stream and the adjacent alluvial aquifer.” Environmental Science and Technology, 28: 2336–2344.

    CAS  Google Scholar 

  • Ware, G.W., D.G. Crosby, and J.W. Giles (1980). “Photodecomposition of DDA.” Archives of Environmental Contamination and Toxicology, 9: 135–146.

    Article  CAS  Google Scholar 

  • World Health Organization (1993). Guidelinesfor Drinking Water Quality, Second Edition, Volume 1: Recommendations. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Wilderer, P.A., U. Forstner, and O.R. Kunschik (1985). “The role of riverbank filtration along the Rhine tor municipal and industrial water supply.” Artificial recharge of groundwater, T. Asano, cd., Butterworth Publishers, Boston, Massachusetts.

    Google Scholar 

  • Wilken, R.D., T.A. Ternes, and T. Heberer (2000). “Pharmaceuticals in sewage, surface and drinking water in Germany.” Security of public water supplies, R.A. Deininger et al., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Winslow J.D., H.G. Stewart, R.H. Johnson, and L.J. Grain (1965). Ground-water resources of eastern Schenectady County. Bulletin 57, New York State Water Resources Commission, New York, New York, 148 p.

    Google Scholar 

  • Yalkowsky, S.H., and R.M. Dannenfelser (1992). Aquasol database of aqueous solubility, Version 5, College of Pharmacy, University of Arizona, Tucson, Arizona.

    Google Scholar 

  • Zullei-Siebert, N. (1996a). “Pesticides and artificial recharge of groundwater via slow sand filtration — Elimination potential and limitations.” Proceedings, International Symposium on Artificial Recharge of Groundwater, A.L. Kivimäki and T. Suokko, eds., The Nordic Coordination Committee for Hydrology (KOHYNO), Helsinki, Finland, 247–253.

    Google Scholar 

  • Zullei-Siebert, N. (1996b). “Belastung von Gewässern mit Pflanzenschutzmitteln: Ergebnisse einer Bestandsaufnahme in Deutschland und der Europäischen Union” (Loads of pesticides in watercourses: Results from a review in Germany and the EU). Proceedings of the Groundwater Colloquium of the TU Dresden, TU Dresden, Dresden, Germany, 179–201.

    Google Scholar 

  • Zullei-Siebert, N. (1998). “Your daily ‘drugs’ in drinking water? State of the art for artificial groundwater recharge.” Artificial recharge of groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Zwiener, C., T. Glauner, and F.H. Frimmel (2000). “Biodegradation of pharmaceutical residues investigated by SPE-GC/ITD-MS and on-line derivatization.” Journal of High Resolution Chromatograply, 23(7–8): 474–478.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Verstraeten, I.M., Heberer, T., Scheytt, T. (2002). Occurrence, Characteristics, Transport, and Fate of Pesticides, Pharmaceuticals, Industrial Products, and Personal Care Products at Riverbank Filtration Sites. In: Ray, C., Melin, G., Linsky, R.B. (eds) Riverbank Filtration. Water Science and Technology Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/0-306-48154-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48154-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1133-7

  • Online ISBN: 978-0-306-48154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics