Skip to main content

Scalability of Wire-Line Analog Front-Ends

  • Chapter
  • 932 Accesses

Abstract

Analog design in deep sub-micron technologies is a reality now and poses severe challenges to the circuit designer. Trends in technologies as well as their effects on circuit design are discussed. It is shown that, specifically for Wire-Line AFE’s, the power required for a certain dynamic range and bandwidth decreases with minimum feature size as long as a constant ratio between signal swing and supplyvoltage can be maintained. However, below 0.1μm channel-length, predictions of the threshold voltage endanger that requirement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Sansen, “Mixed Analog-Digital Design Challenges”, IEEE Colloq. System on a Chip, pp. 1/1–1/6, Sept. 1998.

    Google Scholar 

  2. B. Hosticka et al., “Low-Voltage CMOS Analog Circuits”, IEEE Trans, on Circ. and Syst., vol. 42, no. 11, pp. 864–872, Nov. 1995.

    Google Scholar 

  3. W. Sansen, “Challenges in Analog IC Design in Submicron CMOS Technologies”, Analog and Mixed IC Design, IEEE-CAS Region 8 Workshop, pp. 72–78, Sept. 1996.

    Google Scholar 

  4. Peter Kinget and Michiel Steyaert, “Impact of transistor mismatch on the speed-accuracy-power trade-off of analog CMOS circuits”, Proc. IEEE Custom Integrated Circuit Conference, CICC96, pp.333–336, 1996.

    Google Scholar 

  5. M. Steyaert et al., “Custom Analog Low Power Design: The problem of low-voltage and mismatch”, Proc. IEEECustom Int. Circ. Conf., CICC97, pp.285–292, 1997.

    Google Scholar 

  6. V. Prodanov and M. Green, “Design Techniques and Paradigms Toward Design of Low-Voltage CMOS Analog Circuits”, Proc. 1997 IEEE International Symposium on Circuits and Systems, pp. 129–132, June 1997.

    Google Scholar 

  7. W. Sansen et al., “Towards Sub 1V Analog Integrated Circuits in Submicron Standard CMOS Technologies”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 186–187, Feb. 1998.

    Google Scholar 

  8. Q. Huang et al., “The Impact of Scaling Down to Deep Submicron on CMOS RF Circuits”, IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1023–1036, July 1998.

    Article  Google Scholar 

  9. R. Castello et al. “High-Frequency Analog Filters in Deep-Submicron CMOS Technologies”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 74–75, Feb. 1999.

    Google Scholar 

  10. Klaas Bult, “Analog Broadband Communication Circuits in Deep Sub-Micron CMOS”, IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, pp.76–77, Feb. 1999.

    Google Scholar 

  11. J. Fattaruso, “Low-Voltage Analog CMOS Circuit Techniques”, Proc. Int. Symp. on VLSI Tech., Syst. and Appl., pp. 286–289, 1999.

    Google Scholar 

  12. Daniel Foty, “Taking a Deep Look at Analog CMOS”, IEEE Circuits & Devices, pp. 23–28, March 1999.

    Google Scholar 

  13. D. Buss, “Device Issues in the Integration of Analog/RF Functions in Deep Submicron Digital CMOS”, IEDM Techn. Dig., pp. 423–426, 1999.

    Google Scholar 

  14. A. J. Annema, “Analog Circuit Performance and Process Scaling”, IEEE Trans. on Circ. and Syst., vol. 46, no. 6, pp. 711–725, June 1999.

    Google Scholar 

  15. M. Steyaert et al., “Speed-Power-Accuracy Trade-off in high-speed Analog-to-Digital Converters: Now and in the future⋯”, Proc. AACD, Tegernsee, April 2000.

    Google Scholar 

  16. J. Burghartz et al. “RF Potential of a 0.18-um CMOS Logic Device Technology”, IEEE Trans, on Elec. Dev. vol. 47, no. 4, pp. 864–870, April 2000.

    Google Scholar 

  17. Abrishami et al., “International Technology Roadmap for Semiconductors”, Semiconductor Industry Assoc., 1999.

    Google Scholar 

  18. C. Hu, “Future CMOS Scaling and Reliability”, IEEE Proceedings, vol. 81, no. 5, pp. 682–689, May 1993.

    Google Scholar 

  19. B. Davari et al., “CMOS Scaling for High Performance and Low-Power — The Next Ten Years”, IEEE Proceedings, vol. 83, no. 4, pp. 595–606, April 1995.

    Google Scholar 

  20. K. Lakshmikumar et al., “Characterization and Modelling of Mismatch in MOS Transistor for Precision Analog Design”, IEEE J. of Solid-State Circ., vol SC-21, no. 6, pp. 1057–11066, Dec. 1986

    Google Scholar 

  21. M. Pelgrom et al., “Matching Properties of MOS Transistors”, IEEE J. of Solid-State Circ., vol 24, no. 5, pp. 1433–1439, Oct. 1989.

    Google Scholar 

  22. T. Mizuno et al., “Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET’s”, IEEE Trans. on Elec. Dev. vol. 41, no.11, pp. 2216–2221, Nov. 1994.

    Google Scholar 

  23. M. Pelgrom et al., “Transistor matching in analog CMOS applications”, IEEE IEDM Techn. Dig., pp. 915–918, 1998.

    Google Scholar 

  24. K. McCall et al. “A 6-bit 125 MHz CMOS A/D Converter”, Proc. IEEE Custom Int. Circ. Conf., CICC, 1992.

    Google Scholar 

  25. M. Flynn and D. Allstot, “CMOS Folding ADCs with Current-Mode Interpolation”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.274–275, Feb. 1995.

    Google Scholar 

  26. F. Paillardet and P. Robert, “A 3.3 V 6 bits 60 MHz CMOS Dual ADC”, IEEE Trans. on Cons. Elec., vol. 41, no. 3, pp. 880–883, Aug. 1995.

    Google Scholar 

  27. J. Spalding and D. Dalton, “A 200 MSample/s 6b Flash ADC in 0.61m CMOS”, IEEE Int. Solid-State Circ.Conf., Dig. Tech. Papers, pp. 320–321, Feb. 1996.

    Google Scholar 

  28. R. Roovers and M. Steyaert, “A 175 Ms/s, 6b, 160 mW, 3.3 V CMOS A/D Converter”, IEEE J. of Solid-State Circ., vol 31, no. 7, pp. 938–944, July 1996.

    Google Scholar 

  29. S. Tsukamoto et al., “A CMOS 6-b, 200 MSample/s, 3 V-Supply A/D Converter for a PRML Read Channel LSI”, IEEE J. of Solid-State Circ., vol 31, no. 11, pp. 1831–1836, Nov. 1996.

    Google Scholar 

  30. D. Dalton et al., “A 200-MSPS 6-Bit Flash ADC in 0.6–1m CMOS”, IEEE Trans. on Circ. and Syst., vol. 45, no. 11, pp. 1433–1444, Nov. 1998.

    Google Scholar 

  31. M. Flynn and B. Sheahan, “A 400-MSample/s 6-b CMOS Folding and Interpolating ADC”, IEEE J. of Solid-State Circ., vol 33, no. 12, pp. 1932–1938, Dec. 1998.

    Google Scholar 

  32. S. Tsukamoto et al., “A CMOS 6-b, 400-MSample/s ADC with Error Correction”, IEEE J. of Solid-State Circ., vol 33, no. 12, pp. 1939–1947, Dec. 1998.

    Google Scholar 

  33. Y. Tamba and K. Yamakido, “A CMOS 6b 500 MSample/s ADC for a Hard Disk Drive Read Channel”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.324–325, Feb. 1999.

    Google Scholar 

  34. K. Yoon et al., “A 6b 500 MSample/s CMOS Flash ADC with a Background Interpolated Auto-Zero Technique”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 326–327, Feb. 1999.

    Google Scholar 

  35. I. Mehr and D. Dalton, “A 500-MSample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications”, IEEE J. of Solid-State Circ., vol 34, no. 7, pp. 912–920, July 1999.

    Google Scholar 

  36. K. Nagaraj et al., “Efficient 6-Bit A/D Converter Using a 1-Bit Folding Front End”, IEEE J. of Solid-State Circ., vol 34, no. 8, pp. 1056–1062, Aug. 1999.

    Google Scholar 

  37. K. Nagaraj et al., “A 700 MSample/s 6b Read Channel A/D Converter with 7b Servo Mode”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.426–427, Feb. 2000.

    Google Scholar 

  38. K. Sushihara et al., “A 6b 800 MSample/s CMOS A/D Converter”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.428–429, Feb. 2000.

    Google Scholar 

  39. R.v.d. Plassche, “Integrated Analog-to-Digital and Digital-to-Analog Converters”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  40. K. Bult and A. Buchwald, “An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2IEEE J. o7 Solid-State Circ., vol 32, no. 12, pp. 1887–1895, Dec. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bult, K. (2003). Scalability of Wire-Line Analog Front-Ends. In: Huijsing, J.H., Steyaert, M., van Roermund, A. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-47950-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47950-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7621-7

  • Online ISBN: 978-0-306-47950-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics