Skip to main content

Molecular Diagnosis of HIV Infection

  • Chapter
AIDS in Africa

Conclusion

Although in specific instances PCR may offer some advantages over serologic techniques, efforts to capacitate more laboratories to perform PCR techniques should not replace efforts to maintain laboratories that are able to perform reliable serologic diagnosis of HIV. Even though numerous laboratories in major African cities are currently executing highly sophisticated laboratory protocols, including PCR-based assays, they are too few to keep pace with the scale of the HIV epidemic on the African continent. Several physical, human, and supply requirements must be fulfilled by any laboratory setting to consistently and accurately perform PCR-based tests. If laboratory personnel have a clear understanding of the detection power of PCR, guidelines designed to avoid cross-contamination and false negatives are more likely to be closely followed. It is difficult, time consuming, and extremely expensive to solve problems caused by inappropriate handling of samples, plasmid, or amplified products.

PCR diagnosis should be used when standard serologic tests have failed to provide a definitive result of infection in at-risk neonates or in patients with illnesses that make serologic testing of any kind unreliable. Paradoxically, the extreme sensitivity that characterizes PCR has been one of the main reasons for the lack of its widespread use in clinical laboratories. The development of PCR and RT PCR user-friendly kits with improved PCR primers, the understanding of the importance of containment spaces in addition to molecular aids to minimize carryover are allowing PCR assays to continuously gain acceptance as an important tool in clinical virology laboratories. The combination of information collected using PCR technology with virologic and immunologic assays will help broaden our understanding of HIV genetic variation and its role in transmission, pathogenesis, disease progression, drug resistance, and vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luciw, PA. Human immunodeficiency viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott-Raven Publishers, 1996;1881–1882.

    Google Scholar 

  2. Kanki, PJ. Virologic and biologic features of HIV-2. In: Wormser GP, ed. AIDS and other manifestations of HIV infection. Philadelphia: Lippincott-Raven Publishers, 1988;161–173.

    Google Scholar 

  3. Harper ME, Marselle LM, Gallo RC, et al. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci USA. 1986;83:772–776.

    PubMed  CAS  Google Scholar 

  4. Nakamura S, Katamine S, Yamamoto T, et al. Amplification and detection of a single molecule of human immunodeficiency virus RNA. Virus. Genes. 1993;7:325–338.

    Article  PubMed  CAS  Google Scholar 

  5. Sarr AD, Hamel DJ, Thior I, et al. HIV-1 and HIV-2 dual infection: lack of HIV-2 provirus correlates with low CD4+ lymphocyte counts. AIDS. 1998; 12:131–137.

    Article  PubMed  CAS  Google Scholar 

  6. Robertson DL, Anderson AP, Bradac JA, et al: HIV-1 nomenclature proposal. A reference guide to HIV-1 classification. In: Human Retroviruses and AIDS: A. compilation and analysis of nucleic acid and amino. acid sequences. Kuiken C FB, Hahn BH, Korber B, McCutchan F, Marx PA, Mellors JW, Mullins JL, Sodroski J, Wolinsky S, eds. Los Alamos, NM: Theoretical biology and biophysics group, 1999; 492–505.

    Google Scholar 

  7. McCutchan, FE. Understanding the genetic diversity of HIV-1. AIDS. 2000;14(suppl):S31:S44.

    PubMed  CAS  Google Scholar 

  8. Gao F, Yue L, Robertson DL, et al. Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. J Virol. 1994;68:7433–7447.

    PubMed  CAS  Google Scholar 

  9. Koulinska IN, Ndung’u T, Mwakagile D, et al. A New Human Immunodeficiency Virus Type 1 Circulating Recombinant Form from Tanzania. AIDS Res Hum Retroviruses. 2000; 17(5):423–431.

    Google Scholar 

  10. Essex M. Human immunodeficiency viruses of the developing world. Adv Virus Res. 1999;53:71–88.

    PubMed  CAS  Google Scholar 

  11. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–1354.

    PubMed  CAS  Google Scholar 

  12. Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988; 239:487–491.

    PubMed  CAS  Google Scholar 

  13. Innis MA, Gelfand DH. Optimization of PCRs. In Innis MA, Gelfand DH, Sninsky JJ, White T, eds. PCR protocols: A guide to methods and applications. San Diego: Academic Press, 1990;3–20.

    Google Scholar 

  14. Sirko DA, Ehrlich GD. Laboratory facilities, protocols and operations. In Ehrlich GD, Greenberg AJ, eds. PCR-based diagnostic in infectious diseases. Boston: Backwell Scientific Publications, 1994; 19–44.

    Google Scholar 

  15. Holodniy M. Effects of collection, processing and storage on RNA detection and quantification. In: Kochanowsli B, Reischl U, eds. Quantitative PCR protocols. New Jersey: Humana Press, 1999;43–59.

    Google Scholar 

  16. Gustafson S, Proper JA, Bowie EJ, et al. Parameters affecting the yield of DNA from human blood. Anal. Biochem. 1987; 165:294–299.

    Article  PubMed  CAS  Google Scholar 

  17. Holodniy M, Kim S, Katzenstein D, et al. Inhibition of human immunodeficiency virus gene amplification by heparin, J Clin Microbiol. 1991;29:676–679.

    PubMed  CAS  Google Scholar 

  18. Holodniy M, Mole L, Yen-Lieberman B, et al. Comparative stability of quantitative human immunodeficiency virus RNA in plasma from samples collected in VACUTAINER CPT, VACUTAINER PPT, and standard VACUTAINER tubes. J Clin. Micmbiol. 1995;33:1562–1566.

    CAS  Google Scholar 

  19. Comeau AM, Pitt J, Hillyer GV, et al. Early detection of human immunodeficiency virus on dried blood spot specimens: sensitivity across serial specimens. Women and Infants Transmission Study Group. J Pediatr. 1996;129:111–118.

    PubMed  CAS  Google Scholar 

  20. Biggar RJ, Miley W, Miotti P, et al. Blood collection on filter paper: a practical approach to sample collection for studies of perinatal HIV transmission. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14:368–373.

    PubMed  CAS  Google Scholar 

  21. Clemetson DBA, Moss GB, Willerford DM et al. Detection of HIV DNA in cervical and vaginal secretions-prevalence and correlates among women in Nairobi, Kenya. JAMA. 1993;269:2860–2864.

    Article  PubMed  CAS  Google Scholar 

  22. Sankale JL, Mboup S, Essex ME, et al. Genetic characterization of viral quasispecies in blood and cervical secretions of HIV-1 and HIV-2-infected women. AIDS Res Hum Retroviruses. 1998;14:1473–1481.

    PubMed  CAS  Google Scholar 

  23. Higuchi R. Simple and rapid preparation of samples for PCR. In: Erlich HA ed. PCR technology: principles and applications for DNA amplification. New York: Stockton Press, 1989;31–38.

    Google Scholar 

  24. Kawasaki ES. Sample preparation from blood, cells, and other fluids. In: Innis MA, Gelfand DH, Sninsky JJ, White T, eds. PCR protocols: A guide to. methods and applications. San Diego: Academic Press, 1990; 146–152.

    Google Scholar 

  25. Gelfand DH. Taq DNA polymerase. In: Erlich HA ed. PCR technology: principles and applications for DNA amplification. New York: Stockton Press, 1989;17–22.

    Google Scholar 

  26. Saiki RK. The design and optimization of the PCR. In: Erlich HA ed. PCR technology: principles and applications for DNA amplification. New York: Stockton Press, 1989;7–16.

    Google Scholar 

  27. Longon MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93:125–128.

    Google Scholar 

  28. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature. 1989;339:237–238.

    Article  PubMed  CAS  Google Scholar 

  29. Kwok S. Procedures to minimize PCR-product carry-over. In: Innis MA, Gelfand DH, Sninsky JJ, White T, eds. PCR protocols: A guide to methods. and applications. San Diego: Academic Press, 1990;142–146.

    Google Scholar 

  30. Brock TD, Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969;98:289–297.

    PubMed  CAS  Google Scholar 

  31. Lawyer FC, Stoffel S, Saiki RK, et al. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989;264:6427–6437.

    PubMed  CAS  Google Scholar 

  32. Tindall KR, Kunkel TA. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988;27:6008–6013.

    Article  PubMed  CAS  Google Scholar 

  33. Abramson RD. Thermostable DNA polymerases: An update. In: Innis MA, Gelfand DH, Sninsky JJ, eds. PCR applications. Protocols for functional genomics. San Diego: Academic Press, 1999; 33–47.

    Google Scholar 

  34. Cheng S, Fockler C, Barnes WM, et al. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci USA. 1994;91:5695–5699.

    PubMed  CAS  Google Scholar 

  35. Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA. 1994;91:2216–2220.

    PubMed  CAS  Google Scholar 

  36. Carr JK, Salminen MO, Koch C, et al. Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand. J. Virol. 1996;70:5935–5943.

    PubMed  CAS  Google Scholar 

  37. Carr JK, Salminen MO, Albert J, et al. Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants. Virology. 1998;247:22–31.

    Article  PubMed  CAS  Google Scholar 

  38. Gao F, Robertson DL, Carruthers CD, et al. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol. 1998;72;5680–5698.

    PubMed  CAS  Google Scholar 

  39. Novitsky VA, Montano MA, McLane MF, et al. Molecular cloning and phylogenetic analysis of human immunodeficiency virus type 1 subtype C: a set of 23 full-length clones from Botswana. J. Virol. 1999;73:4427–4432.

    PubMed  CAS  Google Scholar 

  40. Ndung’u T, Renjifo B, Novitsky VA, et al. Molecular cloning and biological characterization of full-length HIV-1 subtype C from Botswana. Virology. 2000;278:390–399.

    Google Scholar 

  41. Ou CY, Kwok S, Mitchell SW, et al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988;239:295–297.

    PubMed  CAS  Google Scholar 

  42. Kellogg DE, Kwok S. 1990. Detection of human immunodeficiency virus. In: Innis MA, Gelfand DH, Sninsky JJ, White T, eds. PCR protocols: A guide to. methods and applications. San Diego: Academic Press, 1990:337–347.

    Google Scholar 

  43. Abbott M, Poiesz B, Sninsky J, et al. A comparison of methods for the detection and quantification of the polymerase chain reaction. J Infect Dis. 1988:158:1158–1169.

    PubMed  CAS  Google Scholar 

  44. Katz ED, Bloch W, Wages J. HPLC quantification and identification of DNA amplified by the polymerase chain reaction. Amplifications. 1992;8:10–13.

    Google Scholar 

  45. Reischl U, Kocchanowski B. Quantitative PCR. In Kochanowsli B, Reischl U, eds. Quantitative PCR. protocols. New Jersey: Humana Press, 1999;3–31.

    Google Scholar 

  46. King JA, Ball JK. Detection of HIV-1 by digoxigenin-labelled PCR and microtitre plate solution hybridization assay and prevention of PCR carry-over by uracil-n-glycosylase, J Virol. Methods. 1993;44:67–76.

    Article  PubMed  CAS  Google Scholar 

  47. Saiki RK, Walsh DS, Erlich HA. Generic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA. 1989:86:6230–6234.

    PubMed  CAS  Google Scholar 

  48. Keller GH, Huang DP, Manak MM. Detection of human immunodeficiency virus type 1 DNA by polymerase chain reaction and capture hybridization in microtiter wells. J Clin Microbiol. 1991; 29:638–641.

    PubMed  CAS  Google Scholar 

  49. Schmidt BL. A rapid chemiluminescence detection method for PCR-amplified HIV-1 DNA. J Virol. Meth. 1991;32;233–244.

    CAS  Google Scholar 

  50. Kohsaka H, Taniguchi A, Richman DD, et al. Microtiter format gene amplification by covalent capture of competitive PCR products: Application to HIV-1 detection. Nucleic Acids Res. 1993;21:3469–3472.

    PubMed  CAS  Google Scholar 

  51. Findlay JB. A containment system for PCR amplification and detection. In: Ehrlich GD and Greenberg SJ, eds. PCR-based diagnostic in infectious diseases. Boston: Backwell Scientific Publications, 1994 pp. 97–113.

    Google Scholar 

  52. Dennis Lo YM. Setting up a PCR laboratory. In: Dennis Lo YM, ed. Clinical applications of PCR. New Jersey: Humana Press, 1998;11–20.

    Google Scholar 

  53. Sarkar G, Sommer SS. Removal of DNA contamination in polymerase chain reaction reagents by ultraviolet irradiation. Methods Enzylmol. 1993; 218:381–388.

    CAS  Google Scholar 

  54. Cimino GD, Metchette KC, Tessman JW, et al. Post-PCR sterilization: a method to control carryover contamination by the polymerase chain reaction. Nucleic Acid Res. 1991; 19:99–107.

    PubMed  CAS  Google Scholar 

  55. Horsburgh CR, Jr, Ou CY, Jason J, Holmberg SD, et al. Duration of the human immunodeficiency virus infection before detection of antibody. Lancet. 1989;2:637–640.

    PubMed  Google Scholar 

  56. Imagawa DT, Lee MH, Wolinsky SM, et al. Human immunodeficiency virus type 1 infection on homosexual men who remain seronegative for prolonged periods. N Engl J Med. 1989;320:1458–1462.

    Article  PubMed  CAS  Google Scholar 

  57. Farzadegan H, Vlahov D, Solomon L, et al. Detection of human immunodeficiency virus type 1 infection by polymerase chain reaction in a cohort of seronegative intravenous drug users. J Infect Dis. 1993;168:327–331.

    PubMed  CAS  Google Scholar 

  58. Moore JP, Cao Y, Ho DD, et al. Development of the antigp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol. 1994;68:5142–5155.

    PubMed  CAS  Google Scholar 

  59. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune response with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–4655.

    PubMed  CAS  Google Scholar 

  60. Mellors JW, Rinaldo CR, Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–1170.

    PubMed  CAS  Google Scholar 

  61. Stein DS, Lyles RH, Graham NM, et al. Predicting clinical progression or death in subjects with earlystage of human immunodeficiency virus (HIV) infection: a comparative analysis of quantification of HIV RNA, soluble tumor necrosis factor II receptors, neopterin, and beta2-microglobulin. Multicenter AIDS Cohort Study. J Inectf Dis. 1997;176:1161–1167.

    CAS  Google Scholar 

  62. Lefrere JR, Roudotthoraval F, Mariotti M, et al. The risk of disease progression is determined during the first year of human immunodeficiency virus type 1 infection. J Infect Dis. 1998;177:1541–1548.

    Article  PubMed  CAS  Google Scholar 

  63. Sethoe SY, Ling AE, Sng EH, et al. PCR as confirmatory test for human immunodeficiency virus type 1 infection in individuals with indeterminate Western blot (Immunoblot) profiles. J Clin. Microbiol. 1995;33:3034–3036.

    PubMed  CAS  Google Scholar 

  64. Schochetman G, Sninsky JJ. Direct detection of HIV infection using nucleic amplification techniques. In: Schochetman G, Geroge JR, eds. AIDS. testing. New York; Springer-Verlag, 1994;141–169.

    Google Scholar 

  65. Jackson JB, Hanson MR, Johnson GM, et al. Long-term follow-up of blood donors with indeterminate human immunodeficiency virus type 1 results on Western blot. Transfusion. 1995;35:98–102.

    Article  PubMed  CAS  Google Scholar 

  66. Jackson JB, MacDonald KL, Cadwell J, et al. Absence of HIV infection in blood donors with indeterminate Western blot test for antibody to HIV-1. N Engl J Med. 1990;322:217–222.

    Article  PubMed  CAS  Google Scholar 

  67. Connors EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331:1173–1180.

    Google Scholar 

  68. Owens DK, Holodniy M, Mcdonald TW, et al. A meta-analytic evaluation of the polymerase chain reaction for the diagnosis of HIV infection in infants. JAMA. 1996;275:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  69. Kuhn L, Abrams EJ, Matheson PB, et al. Timing of maternal-infant HIV transmission. Association between intrapartum factors and early polymerase chain reaction results. AIDS. 1997;11:429–435.

    PubMed  CAS  Google Scholar 

  70. Shaffer N, Chuachoowong R, Mock PA, et al. Short-course zidovudine for perinatal HIV-1 transmission in Bangkok, Thailand: a randomized controlled trial. Lancet. 1999;353:773–780.

    Article  PubMed  CAS  Google Scholar 

  71. Cattaneo E, Zavattoni M, Baldanti F, et al. Diagnostic value of viral culture, polymerase chain reaction and western blot for HIV-1 infection in 218 infants born to HIV-infected mothers and examined at different ages. Microbiologica. 1999;22: 281–291.

    PubMed  CAS  Google Scholar 

  72. Wiktor SZ, Ekpini E, Karon JM, et al. Short-course oral zidovudine for prevention of mother-to-child transmission of HIV-1 in Abidjan, Cote d’Ivoire: a randomized trial. Lancet. 1999;353:781–785.

    PubMed  CAS  Google Scholar 

  73. Fawzi W, Msamanga G, Hunter D, et al. A randomized trial of vitamin supplements in relation to vertical transmission of HIV-1 in Tanzania. J Acquir Immune Defic Syndr. 2000;23:246–254.

    PubMed  CAS  Google Scholar 

  74. Johnson JP, Nair P, Hines SE, et al. Natural history and serologic diagnosis of infants born to human immunodeficiency virus-infected women. Am J Dis. Chil. 1989;143:1147–1153.

    CAS  Google Scholar 

  75. European Collaborative Study. Children born to women with HIV infection: natural history and risk of transmission. Lancet. 1991;337:253–269.

    Google Scholar 

  76. Rogers MF, Schochetman G. HIV infection in children. In: Schochetman G, Geroge JR, eds. AIDS. testing. New York; Springer-Verlag, 1994;266–283.

    Google Scholar 

  77. Palomba E, Gay V, de Martino M, et al. Early diagnosis of human immunodeficiency virus infection in infants by the detection of free and complexed p24 antigen. J Infect Dis. 1992; 165:394–395.

    PubMed  CAS  Google Scholar 

  78. Quinn TC, Kline RL, Halsey N, et al. Early diagnosis of perinatal HIV infection by detection of viralspecific IgA antibodies. JAMA. 1991;266:3439–3442.

    Article  PubMed  CAS  Google Scholar 

  79. Krivine A, Yakudima A, Le May M, et al. A comparative study of virus isolation, polymerase chain reaction, and antigen detection in children of mothers infected with human immunodeficiency virus. J. Pediatr. 1990; 116:372–376.

    PubMed  CAS  Google Scholar 

  80. Wolinsky SM, Wike CM, Korber BT, et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992;255:1134–1137.

    PubMed  CAS  Google Scholar 

  81. Lyamuya, E, Olausson-Hansson, E, Albert, J, et al. Evaluation of a prototype Amplicor PCR assay for detection of human immunodeficiency virus type 1 DNA in blood samples from Tanzanian adults infected with HIV-1 subtypes A, C and D. Journal of Clinical Virology. 2000;17:57–63.

    Article  PubMed  CAS  Google Scholar 

  82. Blackard JT, Renjifo B, Chaplin B, et al. Diversity of the HIV-1 long terminal repeat following mother-to-child transmission. Virology. 2000;274:402–411.

    Article  PubMed  CAS  Google Scholar 

  83. Renjifo B, Gilbert P, Chaplin B, et al. Emerging recombinant human immunodeficiency virus: Uneven representation of the envelope V3 region. AIDS. 1999;13:1613–1621.

    Article  PubMed  CAS  Google Scholar 

  84. Larder BA, Kemp, SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1988;246:1155–1158.

    Google Scholar 

  85. St Clair MH, Martin JL, Tudor-Williams G, et al. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptese. Science. 1991;235:1557–1559.

    Google Scholar 

  86. Fitzgibbon JE, Howell RM, Haberzettl CA, et al. Human immunodeficiency virus type 1 pol gene mutations which cause decreased susceptibility to 2′,3′-dideoxycytidine. Antimicrobial Agents Chemother. 1992;36:153–157.

    CAS  Google Scholar 

  87. Hertogs K, Bloor S, Kemp SD, et al. Phenotypic and genotypic analysis of clinical HIV-1 isolates reveals extensive protease inhibitor cross-resistance: a survey of over 6000 samples. AIDS. 2000;14:1203–1210.

    PubMed  CAS  Google Scholar 

  88. Kaye S. Viral genotyping by a quantitative point mutation assay: Application to HIV-1 drug resistance. In: Innis MA, Gelfand DH, Sninsky JJ, eds. PCR applications. Protocols for functional genomics, San Diego: Academic Press. 1999;153–169.

    Google Scholar 

  89. Rusconi S, Catamancio SL, Sheridan F, et al. A genotypic analysis of patients receiving Zidovudine with either Lamivudine, Didanosine or Zalcitabine dual therapy using the LiPA point mutation assay to detect genotypic variation at codons 41, 69, 70, 74, 184 and 215. J Clin Virol. 2000;19:135–142.

    Article  PubMed  CAS  Google Scholar 

  90. Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. PCR Meth and Appl. 1992;2:1–9.

    CAS  Google Scholar 

  91. Gilliand G, Perrin S, Bunn HF. Competitive PCR for quantification of mRNA.In: Innis MA, Gelfand DH, Sninsky JJ, White T, eds. PCR protocols: A guide to methods and applications. San Diego: Academic Press, 1990;60–69.

    Google Scholar 

  92. Alaeus A, Lidman K, Sonnenborg A, et al. Subtype-specific problems with quantification of plasma HIV-1 RNA. AIDS. 1997;11:859–865.

    PubMed  CAS  Google Scholar 

  93. Chew CB, Herring BL, Zheng F, et al. Comparison of three commercial assays for the quantification of HIV-1 RNA in plasma from individuals infected with different HIV-1 subtypes. J Clin Virol. 1999; 14:87–94.

    Article  PubMed  CAS  Google Scholar 

  94. Parekh B, Phillips S, Granade TC, et al. Impact of HIV type 1 subtype variation on viral RNA quantification. AIDS Res Hum Retroviruses. 1999; 81:123–129.

    Google Scholar 

  95. Mani I, Coa H, Johnson J, et al. Plasma RNA viral load as measured by the branched DNA and nucleic acid sequence-based amplification assays of HIV-1 subtype A and D in Uganda. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;22:208–212.

    CAS  Google Scholar 

  96. Michael NL, Herman SA, Kwok S, et al. Development of calibrated viral load standard for group M subtypes of human immunodeficiency virus type 1 and performance of an improved AMPLICOR HIV-1 MONITOR test with isolates of diverse subtypes. J Clin microbiol. 1999;37: 2557–2563.

    PubMed  CAS  Google Scholar 

  97. Burgisser P, Vernazza P, Flepp M, et al. Performance of five different assays for the quantification of viral load in persons infected with various subtypes of HIV-1. J Acquir Immune Defic Syndr. 2000;23:138–144.

    PubMed  CAS  Google Scholar 

  98. George JR, Ou CY, Parekh B, et al. Prevalence of HIV-1 and HIV-2 mixed infections in Cote d’Ivore. Lancet. 1992;340:337–339.

    PubMed  CAS  Google Scholar 

  99. Kanki PJ. Epidemiology and natural history of HIV-2. AIDS. 1994;8:S1–S9.

    Google Scholar 

  100. Gnann JW Jr, McCormick JB, Mitchell S, et al. Synthetic peptides immunoassays distinguishes HIV type 1 and HIV type 2 infections. Science. 1987;137:1346–1349.

    Google Scholar 

  101. Zuber M, Samuel KP, Lautenberger JA, et al. Bacterially-produced HIV-2 Env polypeptides specific for distinguishing HIV-1 from HIV-1 infections. AIDS Res Hum Retroviruses. 1990; 6:525–534.

    PubMed  CAS  Google Scholar 

  102. Gueye-Ndiaye A, Clark R, Samuel KP, et al. Cost-effective diagnosis of HIV-1 and HIV-2 by recombinant-expressed env peptide (566/996) dot-blot analysis. AIDS. 1993;7:475–481.

    PubMed  CAS  Google Scholar 

  103. Grankvist O, Bredberg-Raden U, Gustafsson A, et al. Improved detection of HIV-2 DNA in clinical samples using a nested primer-based polymerase chain reaction. J Acquir Immune Defic Syndr. 1992;5:286–293.

    PubMed  CAS  Google Scholar 

  104. Erlich GD. PCR-based laboratory methods for the detection of the human retroviridae and hepad-naviridae. In: Ehrlich GD, Greenberg SJ, eds. PCR-based diagnostic in infectious diseases. Boston: Backwell Scientific Publications, 1994;414–446.

    Google Scholar 

  105. Popper SJ, Sarr AD, Travers KU, et al. Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis. 1999;180:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  106. Delwart EL, Shpaer EG, Louwagie J, et al. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science. 1993;262:1257–1261.

    PubMed  CAS  Google Scholar 

  107. Heyndrickx L, Janssens W, Zekeng L, et al. Simplified strategy for detection of recombinant human immunodeficiency virus type 1 group M isolates by gag/env heteroduplex mobility assay. Study Group on Heterogeneity of HIV Epidemics in African Cities. J Virol. 2000;74:363–370.

    Article  PubMed  CAS  Google Scholar 

  108. Renjifo B, Chaplin B, Mwakagile D, et al. Epidemic expansion of HIV type 1 subtype C and recombinant genotypes in Tanzania. AIDS Res Hum Retroviruses. 1998;14:635–638.

    Article  PubMed  CAS  Google Scholar 

  109. Renjifo B, Fawzi W, Mwakagile D, et al. Differences in perinatal transmission between HIV-1 genotypes. J Hum Virol. 2001;4(1):16–25.

    PubMed  CAS  Google Scholar 

  110. Hully JR. In situ PCR. In: Innis MA, Gelfand DH, Sninsky JJ, eds. PCR applications. Protocols for functional genomics. San Diego: Academic Press, 1999;169–194.

    Google Scholar 

  111. Bagasra O, Hauptman SP, Lischner HW, et al Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. N Eng J Med. 1992;326: 1385–1391.

    Article  CAS  Google Scholar 

  112. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993;362:355–358.

    Article  PubMed  CAS  Google Scholar 

  113. Embretson J. Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc Natl Acad. Sci USA. 1993;90:357–361.

    PubMed  CAS  Google Scholar 

  114. Lewin SR, Vesanen M, Kostrikis L, et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol. 1999;73:6099–6103.

    PubMed  CAS  Google Scholar 

  115. O’Doherty U, Swiggard WJ, Malim MH. (2000). Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol. 2000;74:10074–10080.

    Google Scholar 

  116. Valentin A, Trivedi H, Lu W, et al. CXCR4 mediates entry and productive infection of syncytiainducing (X4) HIV-1 strains in primary macrophages. Virology. 2000;269:294–304.

    Article  PubMed  CAS  Google Scholar 

  117. Schutten M, van den Hoogen B, van der Ende ME, et al. Development of a real-time quantitative RT-PCR for the detection of HIV-2 RNA in plasma. J Virol Meth. 2000;88:81–87.

    CAS  Google Scholar 

  118. Wang WK, Lee CN, Dudek T, et al. Interaction between HIV type 1 glycoprotein 120 and CXCR4 coreceptor involves a highly conserved arginine residue in hypervariable region 3. AIDS Res Hum. Retroviruses. 2000; 16:1821–1829.

    PubMed  CAS  Google Scholar 

  119. Wang WK, Dudek T, Zhao YJ, et al. CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120. Proc Natl Acad Sci USA. 1998;95:5740–5745.

    PubMed  CAS  Google Scholar 

  120. Sankale JL, Hamel D, Woolsey A, et al. Molecular evolution of human immunodeficiency virus type 1 subtype A in Senegal: 1988–1997. J Hum Virol. 2000;3:157–164.

    PubMed  CAS  Google Scholar 

  121. Lallemant M, Jourdain G, Le Coeur S, et al. A trial of shortened zidovudine regimens to prevent mother-to-child transmission of human immunodeficiency virus. N Eng J Med. 2000;343:982–991.

    CAS  Google Scholar 

  122. Shaffer N, Chuachoowong R, Mock PA, et al. Short-course zidovudine for perinatal HIV-1 transmission in Bangkok, Thailand: a randomised controlled trial. Lancet. 1999;353:773–780.

    Article  PubMed  CAS  Google Scholar 

  123. Cassol S, Butcher A, Kinard S, et al. Rapid screening for early detection of mother-to-child transmission of human immunodeficiency virus type 1. J Clin microbiol. 1994;32:2641–2645.

    PubMed  CAS  Google Scholar 

  124. Ho D, Rota R, Schooley R, et al. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N. Engl J Med. 1985;313;1493–1497.

    Article  PubMed  CAS  Google Scholar 

  125. Ho D, Byington R, Schooley R, et al. Isolation of HTLA-III from 83 saliva and 50 blood samples from 71 seropositive homosexual men. N Engl J Med. 1985;313;1606.

    Article  PubMed  CAS  Google Scholar 

  126. Gaines H, Albert J, Von Sydow M, et al. HIV antigenemia and virus isolation from plasma during primary HIV infection. Lancet. 1987; 1:1317–1318.

    PubMed  CAS  Google Scholar 

  127. Gendelman HE, Baca LM, Husayni H, et al. Macrophage-HIV interaction: virus isolation and target cell tropism. AIDS. 1990;4:221–228.

    PubMed  CAS  Google Scholar 

  128. Rayfield MA. HIV culture. In: Schochetman G, Geroge JR, eds. AIDS testing. New York; Springer-Verlag, 1994:129–140.

    Google Scholar 

  129. Jackson JB, Kwok SY, Sninsky JJ, et al. Human immunodeficiency virus type 1 detected in all seropositive symptomatic and asymptomatic individuals. J Clin Microbiol. 1988;28:16–19.

    Google Scholar 

  130. Jackson JB. Human immunodeficiency virus type 1 antigen and culture assays. Arch Pathol Lab Med. 1990;114:249–254.

    PubMed  CAS  Google Scholar 

  131. Ulrich PP, Busch MP, El-Beik T, et al. Assessment of human immunodeficiency virus expression in co-cultures of peripheral blood mononuclear cells from healthy seropositive subjects. J Med Virol. 1988;25:1–10.

    PubMed  CAS  Google Scholar 

  132. Dittmar MT, Simmons G, Donaldson Y, et al. Biological characterization of human immunodeficiency virus type 1 clones derived from different organs of an AIDS patient by Long-Range PCR. J Virol. 1997:71:5140–5147.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Renjifo, B. (2002). Molecular Diagnosis of HIV Infection. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics