Skip to main content

Monitoring Viral Load

  • Chapter

Conclusion

The ability to measure HIV-1 viral load has revolutionized our ability to track HIV infection and viral replication. The advent of viral load assays has been both a technologic and pragmatic feat, supplying a sturdy clinical measure to guide clinical AIDS management. Formerly, clinicians and scientists relied on difficult and cumbersome plasma and peripheral blood mononuclear cell cultures for virus isolation, or p24 antigen quantitation to monitor infection in the individual patient. The development of PCR-based methods to measure viral RNA levels has been particularly useful in following patients and managing therapy. Importantly, the measurement of viral load has provided new insights into the mechanisms of HIV transmission and pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fahey JL, Taylor JM, Detels R, et al. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med. 1990;322:166–172.

    Article  PubMed  CAS  Google Scholar 

  2. Redfield R, Wright D, Tramont E. The Walter Reed staging classification for HTLV-III/LAV infection. N Engl J Med. 1986;314:131–132.

    Article  PubMed  CAS  Google Scholar 

  3. Blatt S, Hendrix C, Butzin C, et al. Delayed-type hypersensitivity skin testing predicts progression to AIDS in HIV-infected patients. Ann Intern Med. 1993;119:177–184.

    PubMed  CAS  Google Scholar 

  4. Allain J, Lautian Y, Paul D, et al. Long-term evaluation of HIV antigen and antibodies to p24 and gp41 in patients with hemophilia: Potential clinical importance. N Engl J Med. 1987;317:1114–1121.

    Article  PubMed  CAS  Google Scholar 

  5. Dewolf F, Spijkerman I, Schellekens PT, et al. Aids prognosis based on HIV-1 RNA, CD4+ T-cell count and function-markers with reciprocal predictive value over time after seroconversion. AIDS. 1997;11(15):1799–1806.

    CAS  Google Scholar 

  6. Coombs RW, Collier AC, Allain J, et al. Plasma viremia in human immunodeficiency virus infection. N Engl J Med. 1989;321:1621–1631.

    Article  Google Scholar 

  7. Ho DD, Moudgil T, Alam M. Quantitation of human immunodeficiency virus in the blood of infected persons. N Engl J Med. 1989;321:1621–1625.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta P, Kingsley L, Armstrong J, et al. Enhanced expression of human immunodeficiency type 1 correlates with development of AIDS. Virology. 1993;196:586–595.

    Article  PubMed  CAS  Google Scholar 

  9. Saksela K, Steven C, Ribinstein P, et al. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes. Proc Natl Acad Sci USA. 1994;91:1104–1108.

    PubMed  CAS  Google Scholar 

  10. Fenyo E, Albert J, Asjo B. Replicative capacity, cytopathic effect and cell tropism of HIV AIDS. 1989;3(suppl 1):S5–S12.

    PubMed  Google Scholar 

  11. Tersmette M, De Goede R, Al B, et al. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol. 1988;62:2026–2032.

    PubMed  CAS  Google Scholar 

  12. Koot M, Keet, I, Vos A, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med. 1993;118:681–688.

    PubMed  CAS  Google Scholar 

  13. Pachl C, Todd JA, Kern DG, et al. Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay. J Acquir Immune Defic Syndr. 1995;8(5):446–454.

    CAS  Google Scholar 

  14. Mellors J, Kingsley L, Rinaldo C, et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995;122:573–579.

    PubMed  CAS  Google Scholar 

  15. Vergis EN, Mellors JW. Natural history of HIV-1 infection. Infect Dis Clin North Am. 2000;14(4):809–+.

    Article  PubMed  CAS  Google Scholar 

  16. Mellors JW, Rinaldo CR, Gupta P, et al. Prognosis in HIV-1 Infection Predicted by the Quantity of Virus in Plasma. Science. 1996;272:1167–1170.

    PubMed  CAS  Google Scholar 

  17. Lyles RH, Munoz A, Yamashita TE, et al. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. J Infect Dis. 2000;181(3):872–880.

    Article  PubMed  CAS  Google Scholar 

  18. Sabin CA, Devereux H, Phillips AN, et al. Immune markers and viral load after HIV-1 seroconversion as predictors of disease progression in a cohort of haemophilic men. AIDS. 1998;12(11):1347–1352.

    PubMed  CAS  Google Scholar 

  19. Sabin CA, Devereux H, Phillips AN, et al. Course of viral load throughout HIV-1 infection. J Acquir Immune Defic Syndr. 2000;23(2):172–177.

    PubMed  CAS  Google Scholar 

  20. Hubert JB, Burgard M, Dussaix E, et al. Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection. AIDS. 2000;14(2):123–131.

    PubMed  CAS  Google Scholar 

  21. Clark DR, Wolthers KC. T-cell dynamics and renewal in HIV-1 infection. In: Schuitemaker H and Miedema F, eds. AIDS Pathogenesis. Dordrecht: Kluwer Academic, 2000;28:55–64.

    Google Scholar 

  22. Clark S, Saag M, Decker W, et al. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med. 1991;324:954–960.

    Article  PubMed  CAS  Google Scholar 

  23. Clark SJ, Shaw GM. The Acute Retroviral Syndrome and the Pathogenesis of HIV-1 Infection. Immunology. 1993;5:149–155.

    CAS  Google Scholar 

  24. Schacker TW, Hughes JP, Shea T, et al. Biological and virologic characteristics of primary HIV infection. Ann Intern Med. 1998;128(8).

    Google Scholar 

  25. Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature. 1996;384(6609):529–534.

    Article  PubMed  CAS  Google Scholar 

  26. Haynes BF, Pantaleo G, Fauci AS. Toward an understanding of the correlates of protective immunity to HIV infection [see comments]. Science. 1996;271(5247):324–328.

    PubMed  CAS  Google Scholar 

  27. Fauci AS. Immunopathogenesis of HIV Infection. J Acquir Immune Defic Syndr. 1993;6:655–662.

    PubMed  CAS  Google Scholar 

  28. Stein D, Lyles R, Graham N, et al. Predicting Clinical Progression or Death in Subjects with Early-Stage Human Immunodeficiency Virus (HIV) Infection — a Comparative Analysis of Quantification of HIV RNA, Soluble Tumor Necrosis Factor Type I Receptors, Neopterin, and Beta(2)-Microglobulin, J Infect Dis. 1997; 176(5):1161–1167.

    PubMed  CAS  Google Scholar 

  29. Cao Y, Qin L, Zhang L, et al. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection [see comments]. N Engl J Med. 1995;332(4):201–208.

    Article  PubMed  CAS  Google Scholar 

  30. Rinaldo C, Huang X-L, Fan Z, et al. High Levels of Anti-Human Immunodeficiency Virus Type 1 (HIV-1) Memory Cytotoxic T-Lymphocyte Activity and Low Viral Load are Associated with Lack of Disease in HIV-1-Infected Long-Term Nonprogressors. J Virol. 1995;69(9):5838–5842.

    PubMed  CAS  Google Scholar 

  31. Pantaleo G, Menzo S, Vaccarezza M, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection [see comments], N Engl J Med, 1995;332(4):209–216.

    Article  PubMed  CAS  Google Scholar 

  32. Saag MS, Holodniy M, Kuritzkes DR, et al. HIV viral load markers in clinical practice. Nat Med. 1996;2(6):625–629.

    Article  PubMed  CAS  Google Scholar 

  33. Obrien TR, Rosenberg PS, Yellin F, et al. Longitudinal HIV-1 RNA levels in a cohort of homosexual men. J Acquir Immune Defic Syndr. 1998; 18(2):155–161.

    CAS  Google Scholar 

  34. Hatano H, Vogel S, Yoder C, et al. Pre-HAART HIV burden approximates post-HAART viral levels following interruption of therapy in patients with sustained viral suppression. AIDS. 2000; 14(10):1357–1363.

    PubMed  CAS  Google Scholar 

  35. Notermans DW, Goudsmit J, Danner SA, et al. Rate of HIV-1 decline following antiretroviral therapy is related to viral load at baseline and drug regimen. AIDS. 1998;12(12):1483–1490.

    Article  PubMed  CAS  Google Scholar 

  36. Wong JK, Ignacio CC, Torriani F, et al. In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol. 1997;71:2059–2071.

    PubMed  CAS  Google Scholar 

  37. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–1300.

    Article  PubMed  CAS  Google Scholar 

  38. Dornadula G, Zhang H, VanUitert B, et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA. 1999;282(17):1627–1632.

    Article  PubMed  CAS  Google Scholar 

  39. Putter H, Prins JM, Jurriaans S, et al. Slower decline of plasma HIV-1 RNA following highly suppressive antiretroviral therapy in primary compared with chronic infection. AIDS. 2000;14(18):2831–2839.

    PubMed  CAS  Google Scholar 

  40. Rezza G, Lepri AC, Monforte AD, et al. Plasma viral load concentrations in women and men from different exposure categories and with known duration of HIV infection. J Acquir Immune Defic Syndr. 2000;25(1):56–62.

    PubMed  CAS  Google Scholar 

  41. Sterling TR, Lyles CM, Vlahov D, et al. Sex differences in longitudinal human immunodeficiency virus type 1 RNA levels among seroconverters. J Infect Dis. 1999;180(3):666–672.

    Article  PubMed  CAS  Google Scholar 

  42. Anastos K, Gange SJ, Lau B, et al. Association of race and gender with HIV-1 RNA levels and immunologic progression. J Acquir Immune Defic Syndr. 2000;24(3):218–226.

    PubMed  CAS  Google Scholar 

  43. Mofenson LM, Korelitz J, Meyer WA, et al. The relationship between serum human immunodeficiency virus type 1 (HIV-1) RNA level, CD4 lymphocyte percent, and long-term mortality risk in HIV-1-infected children. J Infect Dis. 1997;175(5):1029–1038.

    PubMed  CAS  Google Scholar 

  44. Naver L, Ehrnst A, Belfrage E, et al. Long-term pattern of HIV-1 RNA load in perinatally infected children. Scand J Infect Dis. 1999;31(4):337–343.

    PubMed  CAS  Google Scholar 

  45. Shearer WT, Quinn TC, Larussa P, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. N Engl J. Med. 1997;336(19):1337–1342.

    Article  PubMed  CAS  Google Scholar 

  46. Dickover RE, Dillon M, Leung KM, et al. Early prognostic indicators in primary perinatal human immunodeficiency virus type 1 infection: Importance of viral RNA and the timing of transmission on long-term outcome. J Infect Dis. 1998;178(2):375–387.

    PubMed  CAS  Google Scholar 

  47. Popper SJ, Dieng-Sarr A, Travers KU, et al. Lower HIV-2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis. 1999;180:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  48. Popper SJ, Dieng-Sarr A, Guèye-NDiaye A, et al. Low Plasma HIV-2 viral load is independent of proviral load: low virus production in vivo. J Virol. 2000;74(3):1554–1557.

    Article  PubMed  CAS  Google Scholar 

  49. Berry N, Ariyoshi D, Jaffar S, et al. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J Hum Virol. 1998;1:457–468.

    PubMed  CAS  Google Scholar 

  50. Coste J, Montes B, Reynes J, et al. Comparative Evaluation of Three Assays for the Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma. J Med Virol. 1996;50:293–302.

    Article  PubMed  CAS  Google Scholar 

  51. Anastassopoulou CG, Toulomi G, Katsoulidou A, et al. Comparative evaluation of the quantiplex HIV-1 RNA 2.0 and 3.0 (bDNA) assays and the amplicor HIV-1 monitor v 1.5 test for the quantitation of human immunodeficiency virus type 1 RNA in plasma. J Virol Methods. 2001;91(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  52. Elbeik T, Charlebois E, Nassos P, et al. Quantitative and cost comparison of ultrasensitive human immunodeficiency virus type 1 RNA viral load assays: Bayer bDNA Quantiplex versions 3.0 and 2.0 and Roche PCR Amplicor Monitor version 1.5. J Clin Microbiol. 2000;38(3): 1113–1120.

    PubMed  CAS  Google Scholar 

  53. Parekh B, Phillips S, Granade TC, et al. Impact of HIV type 1 subtype variation on viral RNA quantitation. AIDS Res Hum Retroviruses. 1999;15(2): 133–142.

    Article  PubMed  CAS  Google Scholar 

  54. Michael NL, Herman SA, Kwok S, et al. Development of calibrated viral load standards for group M subtypes of human immunodeficiency virus type 1 and performance of an improved amplicor HIV-1 monitor test with isolates of diverse subtypes. J Clin Microbiol. 1999;37(8):2557–2563.

    PubMed  CAS  Google Scholar 

  55. Todd J, Pachl C, White R, et al. Performance characteristics for the quantitation of plasma HIV-1 RNA using branched DNA signal amplification technology. J Acquir Immune Defic Syndr. 1995;10(Suppl 2):44.

    Google Scholar 

  56. Alonso R, de Viedma DG, Rodriguez-Creixems M, et al. Effect of potentially interfering substances on the measurement of HIV-1 viral load by the bDNA assay. J Virol Methods. 1999;78(1–2): 149–152.

    PubMed  CAS  Google Scholar 

  57. Yeghiazarian T, Zhao WQ, Read SE, et al. Quantification of human immunodeficiency virus type 1 RNA levels in plasma by using small-volume-format branched-DNA assays. J Clin Microbiol. 1998;36(7):2096–2098.

    PubMed  CAS  Google Scholar 

  58. Erice A, Brambilla D, Bremer J, et al. Performance characteristics of the quantiplex HIV-1 RNA 3.0 assay for detection and quantitation of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2000;38(8):2837–2845.

    PubMed  CAS  Google Scholar 

  59. Murphy DG, Gonin P, Fauvel M. Reproducibility and performance of the second-generation branched-DNA assay in routine quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 1999;37(3):812–814.

    PubMed  CAS  Google Scholar 

  60. Skidmore SJ, Zuckerman M, Parry JV. Accuracy of plasma HIV RNA quantification: A multicentre study of variability. J Med Virol. 2000;61(4):417–422.

    Article  PubMed  CAS  Google Scholar 

  61. Gale H. Evaluation of the Quantiplex human immunodeficiency virus type 1 RNA 3.0 Assay in a tertiary-care center. Clin Diagn Lab Immunol. 2000;7(1): 122–124.

    PubMed  CAS  Google Scholar 

  62. Schuurman R, Descamps D, Weverling GJ, et al. Multicenter Comparison of Three Commercial Methods for Quantification of Human Immunodeficiency Virus Type 1 RNA in Plasma. J Clin Microbiol. 1996;34(12):3016–3022.

    PubMed  CAS  Google Scholar 

  63. Murphy DG, Cote L, Fauvel M, et al. Multicenter Comparison of Roche COBAS amplicor monitor Version 1.5, Organon Teknika NucliSens QT with Extractor, and Bayer Quantiplex Version 3.0 for Quantification of Human Immunodeficiency Virus Type 1 RNA in Plasma. J Clin Microbiol. 2000;38(11):4034–4041.

    PubMed  CAS  Google Scholar 

  64. Vandamme AM, Schmit JC, Vandooren S, et al. Quantification of HIV-1 RNA in plasma: Comparable results with the NASBA HIV-1 RNA QT and the Amplicor HIV Monitor test. J Acquir Immune Defic Syndr. 1996;13(2):127–139.

    CAS  Google Scholar 

  65. Mani I, Cao HY, Hom D, et al. Plasma RNA viral load as measured by the branched DNA and nucleic acid sequence-based amplification assays of HIV-1 subtypes A and D in Uganda. J Acquir Immune Defic Syndr. 1999;22(2):208–209.

    PubMed  CAS  Google Scholar 

  66. Ginocchio CC, Tetali S, Washburn D, et al. Comparison of levels of human immunodeficiency virus type 1 RNA in plasma as measured by the NucliSens nucleic acid sequence-based amplification and quantiplex branched-DNA assays. J Clin Microbiol. 1999;37(4):1210–1212.

    PubMed  CAS  Google Scholar 

  67. Bettini P, Boeri E, Lillo F, et al. HIV-1 RNA Quantification by one-tube quantitative NASBA in HIV-1 infected patients. AIDS. 1996;10:1735–1751.

    PubMed  CAS  Google Scholar 

  68. Notermans DW, De Wolf F, Oudshoorn P, et al. Evaluation of a second-generation nucleic acid sequence-based amplification assay for quantification of HIV type 1 RNA and the use of ultrasensitive protocol adaptations. AIDS Res Hum Retroviruses. 2000; 16(15): 1507–1517.

    Article  PubMed  CAS  Google Scholar 

  69. O’Shea S, Chrystie I, Cranston R, et al. Problems in the interpretation of HIV-1 viral load assays using commercial reagents. J Med Virol. 2000; 61(2):187–194.

    Google Scholar 

  70. Manegold C, Krempe C, Jablonowski H, et al. Comparative evaluation of two branched-DNA human immunodeficiency virus type 1 RNA quantification assays with lower detection limits of 50 and 500 copies per milliliter. J Clin Microbiol. 2000;38(2):914–917.

    PubMed  CAS  Google Scholar 

  71. Nolte FS, Boysza J, Thurmond C, et al. Clinical Comparison of an Enhanced-Sensitivity Branched-DNA Assay and Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma. J Clin Microbiol. 1998;36(3):716–720.

    PubMed  CAS  Google Scholar 

  72. Emery S, Bodrug S, Richardson BA, et al. Evaluation of performance of the Gen-Probe human immunodeficiency virus type 1 viral load assay using primary subtype A, C, and D isolates from Kenya. J Clin Microbiol 2000;38(7): 2688–2695.

    PubMed  CAS  Google Scholar 

  73. Highbarger HC, Alvord WG, Jiang MK, et al. Comparison of the Quantiplex Version 3.0 Assay and a Sensitized Amplicor Monitor Assay for Measurement of Human Immunodeficiency Virus Type 1 RNA Levels in Plasma Samples. J Clin. Microbiol. 1999;37(11):3612–3614.

    PubMed  CAS  Google Scholar 

  74. Clarke JR, Galpin S, Braganza R, et al. Comparative quantification of diverse serotypes of HIV-1 in plasma from a diverse population of patients. J Med Virol. 2000;62(4):445–449.

    Article  PubMed  CAS  Google Scholar 

  75. Coste J, Montes B, Reynes J, et al. Effect of HIV-1 Genetic Diversity of HIV-1 RNA Quantification in Plasma: Comparative Evaluation of Three Commercial Assays. J Acquir Immune Defic Syndr. 1997;15(2):174–175.

    CAS  Google Scholar 

  76. Debyser Z, Vanwijngaerden E, Vanlaethem K, et al. Failure to quantify viral load with two of the three commercial methods in a pregnant woman harboring an HIV type 1 subtype G strain. AIDS Res Hum Retroviruses. 1998;14(5):453–459.

    Article  PubMed  CAS  Google Scholar 

  77. Dunne AL, Crowe SM. Comparison of Branched DNA and Reverse Transcriptase Polymerase Chain Reaction for Quantifying Six Different HIV-1 Subtypes in Plasma. AIDS. 1997;11(1):126–127.

    Article  PubMed  CAS  Google Scholar 

  78. Alaeus A, Lidman K, Sonnerborg A, et al. Subtype-specific problems with quantification of plasma HIV-1 RNA. AIDS. 1997;11(7):859–865.

    Article  PubMed  CAS  Google Scholar 

  79. Gobbers E, Fransen K, Oosterlaken T, et al. Reactivity and amplification efficiency of the NASBA HIV-1 RNA Amplification System with Regard to Different HIV-1 Subtypes. J Virol Methods. 1997;66:293–301.

    Article  PubMed  CAS  Google Scholar 

  80. Burgisser P, Vernazza P, Flepp M, et al. Performance of five different assays for the quantification of viral load in persons infected with various subtypes of HIV-1. J Acquir Immune Defic Syndr. 2000;23(2):138–144.

    PubMed  CAS  Google Scholar 

  81. Segondy M, Ly T, Lapeyre M, et al. Evaluation of the Nuclisens HIV-1 QT Assay for Quantitation of Human Immunodeficiency Virus Type 1 RNA Levels in Plasma. J Clin Microbiol. 1998;36(11):3372–3374.

    PubMed  CAS  Google Scholar 

  82. Nkengasong JN, Bile C, Kalou M, et al. Quantification of RNA in HIV type 1 subtypes D and G by NucliSens and Amplicor assays in Abidjan, Ivory Coast. AIDS Res Hum Retroviruses. 1999; 15(6):495–498.

    Article  PubMed  CAS  Google Scholar 

  83. De Baar MP, van der School AM, Goudsmit J, et al. Design and evaluation of a human immunodeficiency virus type 1 RNA assay using nucleic acid sequence-based amplification technology able to quantify both group M and 0 viruses by using the long terminal repeat as target. J Clin Microbiol. 1999;37(6):1813–1818.

    PubMed  Google Scholar 

  84. Alaeus A, Lilja E, Herman S, et al. Assay of plasma samples representing different HIV-1 genetic subtypes: An evaluation of new versions of the Amplicor HIV-1 monitor assay. AIDS Res Hum Retroviruses. 1999;15(10):889–894.

    Article  PubMed  CAS  Google Scholar 

  85. Triques K, Coste J, Perret JL, et al. Efficiencies of four versions of the amplicor HIV-1 monitor test for quantification of different subtypes of human immunodeficiency virus type 1. J Clin Microbiol. 1999;37(1):110–116.

    PubMed  CAS  Google Scholar 

  86. Fiscus SA, Brambilla D, Coombs RW, et al. Multicenter evaluation of methods to quantitate human immunodeficiency virus type 1 RNA in seminal plasma. J Clin Microbiol. 2000;38(6):2348–2353.

    PubMed  CAS  Google Scholar 

  87. Dyer JR, Gilliam BL, Eron JJ, et al. Quantitation of human immunodeficiency virus type 1 RNA in cell free seminal plasma — comparison of NASBA™ with Amplicor™ reverse transcription-PCR amplification and correlation with quantitative culture. J Virol Methods. 1996;60(2):161–170.

    Article  PubMed  CAS  Google Scholar 

  88. Bremer J, Nowicki M, Beckner S, et al. Comparison of two amplification technologies for detection and quantitation of human immunodeficiency virus type 1 RNA in the female genital tract. J Clin Microbiol. 2000;38(7):2665–2669.

    PubMed  CAS  Google Scholar 

  89. Coombs RW, Speck CE, Hughes JP, et al. Association between culturable Human Immunodeficiency Virus Type 1 (HIV-1) in Semen and HIV-1 RNA Levels in Semen and Blood: Evidence for Compartmentalization of HIV-1 between Semen and Blood. J Infect Dis. 1998;177:320–330.

    PubMed  CAS  Google Scholar 

  90. Shepard RN, Schock J, Robertson K, et al. Quantitation of human immunodeficiency virus type 1 RNA in different biological compartments. J Clin Microbiol. 2000;38(4):1414–1418.

    PubMed  CAS  Google Scholar 

  91. Iversen AKN, Larsen AR, Jensen T, et al. Distinct determinants of human immunodeficiency virus type 1 RNA and DNA loads in vaginal and cervical secretions. J Infect Dis. 1998;177(5):1214–1220.

    Article  PubMed  CAS  Google Scholar 

  92. Lewis P, Nduati R, Kreiss JK, et al. Cell-free human immunodeficiency virus type 1 in breast milk. J Infect Dis. 1998;177(1):34–39.

    Article  PubMed  CAS  Google Scholar 

  93. Pillay K, Coutsoudis A, York D, et al Cell-free virus in breast milk of HIV-1-seropositive women. J Acquir Immune Defic Syndr. 2000;24(4):330–336.

    PubMed  CAS  Google Scholar 

  94. Distefano M, Monno L, Fiore JR, et al. Neurological disorders during HIV-1 infection correlate with viral load in cerebrospinal fluid but not with virus phenotype. AIDS. 1998;12(7):737–743.

    CAS  Google Scholar 

  95. Kravcik S, Gallicano K, Roth V, et al. Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. JAIDS: J Acquir Immune Defic Syndr. 1999;21(5):371–375.

    CAS  PubMed  Google Scholar 

  96. Gisolf EH, van Praag RM, Jurriaans S, et al. Increasing chemokine concentrations despite undetectable cerebrospinal fluid HIV RNA in HIV-1 infected patients receiving antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;25(5):426–433.

    PubMed  CAS  Google Scholar 

  97. Gisslen M, Hagberg L, Fuchs D, et al. Cerebrospinal fluid viral load in HIV-1-infected patients without antiretroviral treatment — a longitudinal study. J Acquir Immune Defic Syndr. 1998;17(4):291–295.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kanki, P.J., Mani, I. (2002). Monitoring Viral Load. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics