Skip to main content

Contraction of Information and Its Inverse Problem in Reactor System Identification and Stochastic Diagnosis

  • Chapter
Book cover Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science & Technology ((ANST,volume 23))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kubo, R., Toda, M., and Hashitsume, N., Statistical Physics II, Nonequilibrium Statistical Mechanics. Solid-State Sciences 31, Springer-Verlag, 1985; originally published (in Japanese) by Iwanami Shoten 1978.

    Google Scholar 

  2. Akaike, H. and Nakagawa, T., Statistical Analysis and Control of Dynamic Systems. KTK Scientific Pub., 1988; originally published (in Japanese), by Saiensusya, 1972.

    Google Scholar 

  3. Fukunishi, K., and Kiyokawa, K., “Dynamical analysis of a boiling water reactor by multivariable autoregressive model”, J., Nucl. Sci. Technol., 13, 139–140, (1976).

    Article  Google Scholar 

  4. Thie, J. A., Reactor noise, Rowman and Littlefield, 1963.

    Google Scholar 

  5. Thie, J. A., Power Reactor Noise, Amer. Nucl. Soc., 1981.

    Google Scholar 

  6. Uhrig, R. E., Random noise techniques in nuclear reactor systems. Ronald Press Co., 1970.

    Google Scholar 

  7. Williams, M. M. R., Random Process in Nuclear Reactors. Pergamon Press, 1974.

    Google Scholar 

  8. Saito, K., “Theory of Reactor Noise (I)”, (in Japanese), JEARI-1187. (1970).

    Google Scholar 

  9. Pacilio, N., Colombino, A., Mosiello, R., Norelli, F., and Jorio, V. M., “The analysis of reactor noise: measuring statistical fluctuations in nuclear systems”, pp. 67–134, in Advances in Nuclear Science and Technology, vol. 11, Plenum, 1979.

    Google Scholar 

  10. Progress in Nuclear Energy (SMORN-II), ed. by Williams and McCormick, vol. 1, 1977.

    Google Scholar 

  11. Fukunishi, K., “Diagnostic analysis of a nuclear power plant using multivariate autoregressive processes”, Nucl. Sci. Eng., 62, 215–225, (1977).

    Google Scholar 

  12. Oguma, R., “Method to evaluate signal transmission paths in dynamic systems and its application to reactor noise analysis”, J. Nucl. Sci. Technol., 18, 835–844, (1981).

    Article  Google Scholar 

  13. Upadhyaya, B. R., and Kitamura, M., “Stability monitoring of boiling water reactors by time series analysis of neutron noise”, Nucl. Sci. Eng., 77, 480–492, (1981).

    Google Scholar 

  14. Progress in NuclearEnergy (SMORN-III), ed. by Williams and McCormick, vol. 9, 1982.

    Google Scholar 

  15. Kanemoto, S., Ando, Y., Yamamoto, F., Kitamoto, K., and Nunome, K., “Identification of pressure control system dynamics in BWR plant by multivariate autoregressive modeling technique”, J. Nucl. Sci., Technol., 19, 58–68, (1982).

    Article  Google Scholar 

  16. Progress in Nuclear Energy (SMORN-IV), ed. by Williams and McCormick, vol. 15, 1985.

    Google Scholar 

  17. Progress in Nuclear Energy (SMORN-V), ed. by Beynon and Sehgal, vol. 21, 1988.

    Google Scholar 

  18. Proceeding on A Symposium on Nuclear Reactor Surveillance and Diagnostics. (SMORN-VI), 1991.

    Google Scholar 

  19. Haykin, S., Nonlinear Methods of Spectral Analysis, Topics in Applied Physics, vol. 34, Berlin, Springer-Verlag, 1979.

    Google Scholar 

  20. Hoogenboom, J. E., Ciftcioglu, Ö., and van Dam, H., “Summary of the benchmark test on artificial noise data” Prog. Nucl. Energy, 21, 815–824, (1988).

    Article  Google Scholar 

  21. Kubo, R., Matsuo, K., and Kitahara, K., “Fluctuation and relaxation of macrovariables” J. Statis. Phys., 9, 51–96, (1973).

    Article  ADS  Google Scholar 

  22. Kishida, K., “Physical Langevin model and the time-series model in systems far from equilibrium”, Phys. Rev., A, 25, 496–507, (1982).

    Article  MathSciNet  ADS  Google Scholar 

  23. Kishida, K., “Equivalent random force and time-series model in systems far from equilibrium”, J. Math. Phys., 25, 1308–1313, (1984).

    Article  MathSciNet  ADS  Google Scholar 

  24. Yamada, S. and Kishida, K., “Systematic approach for stochastic model in reactor noise analysis”, Ann. nucl. Energy, 19, 549–560, (1992).

    Article  Google Scholar 

  25. Kishida, K., “Innovation models for stochastic process and their zeros”, IEICE Trans. Fundamentals, E-74, 2540–2546, (1991).

    Google Scholar 

  26. Kishida, K., “Innovation model and reactor noise analysis”, Proceedings of the 6th Symposium on Nuclear Reactor Surveillance and Diagnostics (SMORN-VI), Gatinburg, Tennessee, vol. lof2, pp. 26.01–26.12, (1991).

    Google Scholar 

  27. Kishida, K., “Contraction of information in systems far from equilibrium”, J. Math. Phys., 32, 92–98, (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Desai, U., Pal, D., and Kirkpatrick, R. D., “A Realization approach to stochastic model reduction”, Int. J. Control, 42, 821–838, (1985).

    Article  MATH  Google Scholar 

  29. Aoki, M., State Space Modeling of Time Series. Springer-Verlag, 1987.

    Google Scholar 

  30. Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input/output functions”, Regelungstechnik, 14, 545–548, (1966).

    MATH  Google Scholar 

  31. van Kampen, N. G., “A power series expansion of the master equation”, Can. J. Phys., 39, 551–567, (1961).

    MATH  ADS  Google Scholar 

  32. Tomita, K., and Tomita, H., “Irreversible circulation of fluctuation”, Prog. Theor. Phys., 51, 1731–1749, (1974).

    Article  ADS  Google Scholar 

  33. Kishida, K., Kanemoto, S. and Sekiya, T., “Reactor noise theory based on system size expansion”, J. Nucl. Sci. Technol., 13, 19–29, (1976).

    Article  Google Scholar 

  34. Kishida, K. and Sasakawa, H., “Hidden state variables and AR-MA formulation of reactor noise”, 17, 16–25, (1980).

    Google Scholar 

  35. Pál, L., “Statistical Fluctuations of neutron multiplication”, in Proceedings of the 2nd United Nations International Conference on the peaceful uses of atomic energy, vol. 2, pp. 218–224, (1958).

    Google Scholar 

  36. Bell, G. I., “On the stochastic theory of neutron transport”, Nucl. Sci. Eng., 21, 390–401, (1965).

    Google Scholar 

  37. Courant, E. D., and Wallance, P. R., “Fluctuations of the number of neutrons in a pile”, Phys. Rev., 72, 1038–1048, (1947).

    Article  ADS  Google Scholar 

  38. Cohn, C. E., “A simplified theory of pile noise”, Nucl. Sci. Eng., 7, 472–475, (1960).

    Google Scholar 

  39. Yamada, s., Kishida, K., and Bekki, K., “Properties of autoregressive model in reactor noise analysis (I): Convergence of parameters and power spectral density”, 24, 1009–1021, (1987).

    Google Scholar 

  40. Levinson, N. “The Wiener RMS (root mean square) error criterion in filter design and prediction”, J. Math. Phys., 25, no. 4, 261–278, (1947).

    MathSciNet  Google Scholar 

  41. Durbin, J. “The fitting of time-series models”, Rev. Internat. Statist. Inst., 28, no. 3, 233–244, (1960).

    Article  MATH  Google Scholar 

  42. Akaike, H., “Statistical predictor identification”, Ann. Inst. Statist. Math., 22, 203–217, (1970).

    Article  MathSciNet  MATH  Google Scholar 

  43. Akaike, H., “A new look at the statistical model identification”, IEEE Trans. Automatic Control, AC19, 716–723, (1974).

    Article  MathSciNet  ADS  Google Scholar 

  44. Rissanen, J., “Modeling by shortest data description”, Automatica, 14, 465–471, (1978).

    Article  MATH  Google Scholar 

  45. Suda, N., Konno, H., Oguma, R., Kishida, K., Kitamura, M., Mirishima, N., and Ando, Y., “Reactor noise analysis: Recent research activities in Japan”, J. Nucl. Sci. Technol., 26, 39–51, (1989).

    Article  Google Scholar 

  46. Kishida, K., Yamada, S., and Bekki, K., “Application of AR model to reactor noise analysis”, Prog. Nucl. Energy, 15, 841–848, (1985).

    Article  Google Scholar 

  47. Yamada, S., Kishida, K., and Bekki, K., “Notes on poles and convergence rate of autoregressive model”, J. Statist. Comput. Simul. 25, 273–293, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  48. Kishida, K., Yamada, S.. and Bekki, K., “Notes on poles of autoregressive type model Part I: Non-robust singular pole”, J. Math. Anal. Appl., 124, 98–116, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  49. Kishida, K., Yamada, S., and Bekki, K., “Notes on poles of autoregressive type model Part II: Robust singular pole”, 123. 480–493, (1987).

    MathSciNet  MATH  Google Scholar 

  50. Kishida, K., Yamada, K., and Bekki, K., “Notes on poles of autoregressive type model Part III: General case”, J. Math. Anal. Appl., 159, 175–201, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  51. Kishida, K., Yamada, S., and Sugibayashi, N., “Weight of pole in autoregressive type model”, IEICE Trans. Fundamentals, E72, 514–520, (1989).

    Google Scholar 

  52. Kishida, K., and Yamada, S., “Poles and their weights of AR type model”, Prog. Nucl. Energy, 21, 679–686, (1988).

    Article  Google Scholar 

  53. Kishida, K., and Suda, N., “A theory of reactor diagnosis in feedback systems”, J. Nucl. Sci. Technol., 31, 526–538, (1994).

    Article  Google Scholar 

  54. Rosenbrock, H. H., State-space and Multivariable Theory, Nelson, 1970.

    Google Scholar 

  55. Kishida, K. and Suda, N., “Can we observe open loop transfer functions in a stochastic feedback system?”, Proceeding in the 1st JSME/ASME Joint International Conference on Nuclear Engineering, (ICONE-1) pp. 149–154, (1991).

    Google Scholar 

  56. Goodwin, G., and Payne, R. L., Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, 1977.

    Google Scholar 

  57. Ng, T. S., Goodwin, G. C., and Anderson, B. D. O., “Identifiability of MIMO linear dynamic systems operating in closed loop”, Automatica, 13, 477–485, (1977).

    Article  MATH  Google Scholar 

  58. Anderson, B. D. O., and Gevers, M. R., “Identifiability of linear stochastic systems operating under linear feedback”, Automatica, 18, 195–213, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  59. Sin, K. S., and Goodwin, G. C., “Checkable conditions for identifiability of linear systems operating in closed loop”, IEEE Trans. Automatic Control, AC-25, 722–729, (1980).

    Article  MathSciNet  Google Scholar 

  60. Anderson, B. D. O., and Gevers, M. R., “On the minimality of feedback realizations”, Int. J. Control, 37, 145–158, (1983).

    Article  MathSciNet  MATH  Google Scholar 

  61. Barnett, S., Introduction to Mathematical Control Theory, Oxford, 1975.

    Google Scholar 

  62. Sumita, K., and Nakamura, H., “JRR-1 Reactor noise model”, (in Japanese) memo No. 159 in Controllaboratory in JEARI, (1962).

    Google Scholar 

  63. Suda, N.: Reactor Kinetics and Control (in Japanese), in p. 185, Dobunshoin, 1969.

    Google Scholar 

  64. Kishida, K., Kanemoto, S. Sekiya, and Tomita, K., “Irreversible circulation of fluctuation in reactor noise”, J. Nucl. Sci. Technol., 13, 161–171. (1976).

    Article  Google Scholar 

  65. Kishida, K., “Innovation models in a stochastic system represented by an input-output model”, IEICE Trans. Fundamentals, E77-A, 1337–1344, (1994).

    Google Scholar 

  66. Kishida, K., Yamada, S., and Sugibayashi, N., “Observation noise and zero loci of a time series model”, IEEE Trans. Signal Processing, 41, 2269–2273, (1993).

    Article  MATH  ADS  Google Scholar 

  67. Tri, T. D., “A new algorithm for recursive estimation of ARMA parameters in reactor noise analysis”, Ann. nucl. Energy, 19, 287–301. (1992).

    Article  Google Scholar 

  68. Tri, T. D., “Generalization of the signal transmission path method for ARMA model in reactor noise analysis”, Ann. nucl. Energy, 19, 341–345, (1992).

    Article  Google Scholar 

  69. Tri, T. D., “Application of autoregressive moving average model in reactor noise analysis”, Ann. nucl. Energy, 20, 815–822, (1993).

    Article  Google Scholar 

  70. Yamada, S., Kishida, K., and Sumita, K., “Properties of autoregressive model in reactor noise analysis, (II): Interpretation of poles in terms of power spectral density”, J. Nucl. Sci. Technol., 27, 700–711, (1990).

    Article  Google Scholar 

  71. Kishida, K., “Autoregressive model analysis and decay ratio”, Ann. nucl. Energy, 17, 157–160, (1990).

    Article  Google Scholar 

  72. Saito, K., “Nonlinear nuclear stochastic theory”, pp. 79–128, in Advances in NuclearScience and Technology, Plenum, 1983.

    Google Scholar 

  73. March-Leuba, J., Cacuci, D., G., and Perez R., B., “Nonlinear dynamics and stability of boiling water reactors: Part 1 Qualitative analysis, Part 2 Quantitative analysis”, Nucl. Sci. Eng., 93, 111–136, (1986).

    Google Scholar 

  74. Bergdahl, B.G., Reisch, F., Oguma, R., Lorenzen, J., and Akerhielm, F., “BWR stability investigation at Forsmark 1”, Ann. nucl. Energy, 16, 509–520, (1989).

    Article  Google Scholar 

  75. Van Dooren, P., “A generalized eigenvalue approach for solving Riccati equation”, SIAM J. Sci. Stat. Comput., 2, 121–135, (1981).

    Article  MATH  Google Scholar 

  76. Arnold, W. F., and Laub, A. J., “Generalized eigenproblem algorithms and software for algebraic Riccati equations”, Proc. IEEE, 72, 1746–1754, (1984).

    Article  Google Scholar 

  77. Bittati, S., Laub, A. J. and Willems, J. C., The Riccati Equation, Springer-Verlag, 1991.

    Google Scholar 

  78. Sugimoto, K., Inoue, A, and Masuda, S., “Solvability of discrete-time Riccati equation for singular weighings”, preprint of International Symposium on the Mathematical Theory of Networks and Systems (MTNS-91), Kobe, pp. 422–423 (1991).

    Google Scholar 

  79. Katayama, T., and Onuki, Y., “Linear quadratic regulator and spectral factorization for discrete-time descriptor system” (in Japanese), Trans. Soc. Instr. Control Eng. (SICE), 28, 87–96, (1992).

    Google Scholar 

  80. Passas, T., Laub, A. J., and Sandell, N. R., “On the numerical solution of the discrete-time algebraic Riccati equation”, IEEE Trans. Automatic Control, AC-25, 631–641, (1980).

    Google Scholar 

  81. Faurre, P. L., “Stochastic realization algorithms”, in System Identification: Advances and Case Studies ed. by Mehra and Lainitis, Academic Press, 1976.

    Google Scholar 

  82. Anderson, B. D. O. and Moore, J. B., Optimal filtering. Prentice-Hall, 1979.

    Google Scholar 

  83. Luenberger, D. G., “Canonical forms for linear multivariable systems”, IEEE Trans. Automatic Control, AC-12, 290–293, (1967).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kishida, K. (2002). Contraction of Information and Its Inverse Problem in Reactor System Identification and Stochastic Diagnosis. In: Advances in Nuclear Science and Technology. Advances in Nuclear Science & Technology, vol 23. Springer, Boston, MA. https://doi.org/10.1007/0-306-47810-2_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47810-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45184-3

  • Online ISBN: 978-0-306-47810-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics