Skip to main content

Chemical Bonds, Structure, Properties and Preparation of Hydrated Oxides

  • Chapter
Soft Mechanochemical Synthesis
  • 237 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauling, Linus, The Nature of the Chemical Bond. Pasadena, CA: Cornell University Press, 1939.

    Google Scholar 

  2. Mulliken R.S. Note on electric moment and infra-red spectra. A correction. J. Chem. Phys. 1934; 2: 712–13.

    CAS  Google Scholar 

  3. Hinze J., Jaffe H.H. Electronegativity. IV. Orbital electronegativities of the neutral atom of the period III A and IV A and of positive ions of periods I and II. J. Phys. Chem. 1963; 67: 1501–6.

    CAS  Google Scholar 

  4. Iczkowski R.P., Margrave J.L. Electronegativity. J. Amer. Chem. Soc. 1961; 83: 3547–51.

    Article  CAS  Google Scholar 

  5. Emsley, John, The Elements. 2nd edition. Oxford: Claredon Press, 1991.

    Google Scholar 

  6. Viting, Leonid, The High-Temperature Solutions-Meltings. Moskva: MGU, 1991.

    Google Scholar 

  7. Sanderson R.T. Electronegativities in Inorganic Chemistry. J. Chem. Educ. 1954; 31: 2–17.

    CAS  Google Scholar 

  8. Klopman G.J. Electronegativity. J. Chem. Phys. 1965; 43, Pt 2: S214–29.

    Article  Google Scholar 

  9. Parr R., Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Claredon Press, 1989.

    Google Scholar 

  10. Parr R.G., Donnelly R.A., Levy M., Palke W.E. Electronegativity: the density functional viewpoint. J. Chem. Phys. 1978; 68(8): 3801–7.

    Article  CAS  Google Scholar 

  11. Parr R.G., Pearson R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Amer. Chem. Soc. 1983; 27(4):734–40.

    Google Scholar 

  12. Pearson R.G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 1988; 27(4): 734–40.

    Article  CAS  Google Scholar 

  13. Pearson R.G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 1987; 64(7): 561–7.

    Article  CAS  Google Scholar 

  14. Wells, Alexander, Structural Inorganic Chemistry. 4th edition. Oxford: Claredon Press, 1986.

    Google Scholar 

  15. Mirkin L.I. Handbook: X-ray Structural Analysis of Crystals. Moskva: Izd. Phys. Math. Lit, 1961.

    Google Scholar 

  16. Brönsted I, Rec. Trav. Chim., 1923; 42: 718–25.

    Google Scholar 

  17. Lowry T., Strength of acids and bases. Chem. and Ind. 1923; 42: 43–51.

    CAS  Google Scholar 

  18. Lewis, G., Valence and the Structure of Atoms and Molecules, New York, 1923.

    Google Scholar 

  19. Day, Clyde and Selbin, Joel, Theoretical Inorganic Chemistry. New York: Reinhold Publ. Corp., 1962.

    Google Scholar 

  20. Hammet L.P., Deyrup A.J. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 1932; 54: 2721–29.

    Google Scholar 

  21. Tanabe K. Solid asids and bases. In Catalysis by Acids and Bases. Ed. B. Imelink. Amsterdam: Elsevier, 1985.

    Google Scholar 

  22. Paukschtis, Evgenii, Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis. Novosibirsk: Nauka, 1992.

    Google Scholar 

  23. Kireev V.A. Acid-base properties of oxides. Zhurn, Fiz. Khim. 1964; 38: 1881–92.

    CAS  Google Scholar 

  24. Godovikov A.A. Using electronegativities in the systematics of minerals and inorganic substances. Zhurn. Neorg. Khim. 1993; 38: 1468–82.

    CAS  Google Scholar 

  25. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976; 32A: 751–67.

    Google Scholar 

  26. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Cryst. 1969; 25: 925–46.

    CAS  Google Scholar 

  27. Godovikov, Alexandr, Orbital Radii and Properties of Elements. Novosibirsk: Nauka, 1977.

    Google Scholar 

  28. Clifford A.F. The Prediction of Solubility Product Constants. J. Amer. Chem. Soc., 1957; 79: 5404–7.

    CAS  Google Scholar 

  29. Kumok V.N., Kuleschova O.M., Karabin L.A. Solubility Product Constants. Novosibirsk: Nauka, 1983.

    Google Scholar 

  30. Differential Thermal Analysis. V.I. Fundamental Aspects. Ed. Mackenzie R. C. London and New York: Academic Press, 1970.

    Google Scholar 

  31. Thermal Constants of Inorganic Substances. Ed. Gluschko V.P. In 10 volumes. Moskva: VINITI, 1970–1985.

    Google Scholar 

  32. Chalii V. P. Hydroxides of Metals. Kiev: Naukova Dumka, 1972.

    Google Scholar 

  33. Dzisko, Vera and Karnaukhov, Anatolii and Tarasova, Djemma. Physico-Chemical Basis of Synthesis of Oxide Catalysts. Novosibirsk: Nauka, 1978.

    Google Scholar 

  34. Akitt J.W. 27 Al Nuclear magnetic resoance studies of the hydrolisis and polimerisation of the hexa-aquo-aluminium (III) cation. J. Chem. Soc. Dalton Trans. 1972; 5: 604–9.

    Google Scholar 

  35. Iohanson G. The crystal structures of Al 2 (OH) 2 (H 2 O) 8 (SO 4)2.2H 2 O and Al 2 (OH) 2 (H 2 O) 8 (SeO 4)2.2H 2 O. Acta Chem. Scand. 1962; 16: 103–20.

    Google Scholar 

  36. Berestneva Z.Ya., Kargin V.A. About formation mechanism of colloidal particles. Uspekhi Chimii, 1955; 24: 249–59.

    CAS  Google Scholar 

  37. Dzisco V.A., Ivanova A.S., Vischnyakova G. P. Formation of aluminium hydroxide at aqing. Kinetika i Kataliz, 1976; 17: 483–90.

    Google Scholar 

  38. Vysotsky Z.Z., Galinskaya V.I., Kolytchev V.I. et al. About the role of polymerization and depolymerization of silicic acid in the processes of formation and rearrangement of the gel carcass. In Adsorption and Adsorbents. Kiev: Naukova Dumka, 1972.

    Google Scholar 

  39. Pletnev R.N., Ivanin A.A., Kleshchev D.G. Hydrated Oxides of the Elements of IV and V groups. Moskva: Nauka, 1986.

    Google Scholar 

  40. Santacesaria E., Tonello M., Storti G. et al. Kinetics of titanium dioxide precipitation by thermal hydrolisis. J. Colloid Interface Sci. 1986; 111: 44–56.

    Article  CAS  Google Scholar 

  41. Reinten Kh.T. Equipment, preparation and properties of hydrated zirconium dioxide. In Structure and Properties of Adsorbents and Catalysts. Ed. Linsen B.G. Moskva: Nauka, 1973, p. 332–83.

    Google Scholar 

  42. Muha G.M., Vauoghan P.A. Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides. J. Chem. Phys. 1960; 33: 194–99.

    Article  CAS  Google Scholar 

  43. Godneva M.M., Motov D.L. Chemistry of Titanium Subgroup. Sulphates and Their Solutions. Leningrad: Nauka, 1980.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Chemical Bonds, Structure, Properties and Preparation of Hydrated Oxides. In: Soft Mechanochemical Synthesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47646-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47646-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7431-2

  • Online ISBN: 978-0-306-47646-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics