Skip to main content

Electroplating and Surface Finishing

  • Chapter
Fundamental Aspects of Electrometallurgy
  • 1296 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Readings

  1. Brenner A., Electrodeposition of Alloys, Principles and Practice, Vol.1, New York: Academic Press, 1963.

    Google Scholar 

  2. Ilyushenko L.F. Elektroliticheski Osazhdenie Magnitnie Plenki, Minsk: Nauka i Tekhnika, 1979.

    Google Scholar 

  3. Dahms H., Croll I.M. The Anomalous Codeposition of Iron-Nickel Alloys. J. Electrochem. Soc. 1965; 112:771–775.

    CAS  Google Scholar 

  4. Horkans J.. Effect of Plating Parameters on Electrodeposited NiFe. J. Electrochem. Soc. 1981; 128:45–49.

    CAS  Google Scholar 

  5. Matlosz M. Competitive Adsorption Effects in the Electrodeposition of Iron-Nickel Alloys. J. Electrochem. Soc. 1993; 140:2272–2279.

    CAS  Google Scholar 

  6. Vaes J., Franser J., Celis J.P. The Role of Metal Hydroxides in NiFe Deposition. J. Electrochem. Soc. 2000; 147:3718–3724.

    CAS  Google Scholar 

  7. Djokič S.S., Maksimović M.D.. “Electrodeposition of Nickel-Iron Alloys” In Modern Aspects of Electrochemistry, Vol. 22, pp. 417–466, J.O’M. Bockris, B.E. Conway and R.E. White, eds., New York: Plenum Press 1992.

    Google Scholar 

  8. Podlaha E.J., Landolt D. Induced Codeposition. J. Electrochem. Soc. 1996; 143:885–892.

    CAS  Google Scholar 

  9. Chassaing E., Quang K.Vu., Wiart R.. Mechanism of Nickel-Molybdenum Alloy Electrodeposition in Citrate Electrolytes. J. Appl. Electrochem. 1989; 19:839–843.

    Article  CAS  Google Scholar 

  10. Djokič S.S. Electrodeposition of Amorphous Alloys Based on the Iron Group of Metals. J. Electrochem. Soc. 1999; 146:1824–1828.

    Google Scholar 

  11. Haseeb A.S.M.A., Celis J.P., Ross J.R. Dual-bath Electrodeposition of Cu/Ni Compositionally Modulated Multilayers. J. Electrochem. Soc. 1994; 141:230–237.

    CAS  Google Scholar 

  12. Rousseau A., Benabeu P. Single-bath Electrodeposition of Chromium-Nickel Compositionally Modulated Multilayers (CMM) from a Trivalent Chromium Bath. Plat. And Surf. Finish. 1999; 86(9):106–110.

    CAS  Google Scholar 

  13. Kelly J.J., Bradley P.E., Landolt D. Additive Effects During Pulsed Deposition of Cu-Co Nanostructures, J. Electrochem. Soc. 2000; 147:2975–2980.

    CAS  Google Scholar 

  14. Landolt D. Electrochemical and Materials Science Aspects of Alloy Deposition. Electrochim. Acta. 1994; 39:1075–1090.

    Article  CAS  Google Scholar 

  15. Ying R. Electrodeposition of Copper-Nickel Alloys from Citrate Solutions on Rotating Disk Electrode. I Experimental Results. J. Electrochem. Soc. 1988; 135:2957–2964.

    CAS  Google Scholar 

  16. Hovestad A., Janssen L.J.J., Electrochemical Codeposition of Inert Particles in a Metallic Matrix. J. Appl. Electrochemistry. 1995; 25:579–527.

    Google Scholar 

  17. Buelens C., Celis J.P., Roos J.R. Electrochemical Aspects of the Codeposition of Gold and Copper with Inert Particles. J. Appl. Electrochem. 1983; 13:541–548.

    Article  CAS  Google Scholar 

  18. Hwang B. J. Hwang C. S. Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt. J. Electrochem. Soc. 1993; 140:979–984.

    CAS  Google Scholar 

  19. Guglielmi N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. J. Electrochem. Soc. 2000; 119:1009–1012.

    Google Scholar 

  20. Celis J., Roos J. R.. Kinetics of the Deposition of Alumina Particles from Copper Sulfate Plating Baths. J. Electrochem. Soc. 1977; 124:1508–1511.

    CAS  Google Scholar 

  21. Nowak P., Socha R.P., Kaisheva M., Fransaer J., Celis J. P., Stoinov Z., Electrochemical Investigation of the Codeposition of SiC and SiO 2 Particles with Nickel. J. Appl. Electrochem. 2000; 30:429–437.

    Article  CAS  Google Scholar 

  22. Musiani M., Electrodeposition of Composites: An Expanding Subject in Electrochemical Materials Science. Electrocim. Acta 2000; 45:3397–3402.

    CAS  Google Scholar 

  23. Chen C.C., Bose C.S.C., Rajeshwar K.. The Reduction of Oxygen and Oxidation of Hydrogen at Polypyrrole Film Electrodes Containing Nanodispersed Platinum Particles. J. Electroanal. Chem. 1993; 350:161.

    Article  CAS  Google Scholar 

  24. Alonso-Vante N., Cattarin C., Musiani M. Electrocatalysis of O 2 Reduction at Polyaniline + Molybdenum-Doped Ruthenium Selenide Composite Electrodes. J. Electroanal. Chem. 2000; 481:200–207.

    Article  CAS  Google Scholar 

  25. Beck F., Dahlhaus F., Zahedi N. Anodic Codeposition of Polypyrrole and Dispersed TiO 2 . Electrochim. Acta. 1992; 37:1265.

    Article  CAS  Google Scholar 

  26. Beck F., Dahlhaus M. Anodic Formation of Polypyrrole/Tungsten Trioxide Composites. J. Appl. Electrochem. 1993; 23:781.

    CAS  Google Scholar 

  27. Li H.S., Josowicz M., Baer D.R., Engelhard M.H., Janata J. Preparation and Characterization of Polyaniline-Palladium Composite Films, J. Electrochem. Soc. 1995; 142:798–805.

    CAS  Google Scholar 

  28. Hapel M. The Electrolytic Oxidation of Methanol at Finely Dispersed Platinum Nanoparticles in Polypyrrole Films. J. Electrochem. Soc, 1998; 145:124–134.

    Google Scholar 

  29. Musiani M. Anodic Deposition of PbO 2 /Co 3 O 4 Composites and Their Use as Electrodes for Oxygen Evolution reaction. J. Chem. Soc. Commun. 1996; 21:2403–2404.

    Google Scholar 

  30. Cattarin S., Frateur I., Guerriero P., Musiani M. Electrodeposition PbO 2 +CoO x of Composites by Simultaneous Oxidation of Pb 2+ and Co 2+ and Their Use as Anodes for Oxygen Evolution. Electrochim. Acta. 2000; 45:2279–2288.

    Article  CAS  Google Scholar 

  31. Musiani M., Guerriero P. Electrodeposited Tl 2 O 3 -Matrix Composites I: Effect of the Dispersed Phase on Nucleation and Growth of the Matrix. J. Electrochem. Soc. 1998; 145:549–554.

    CAS  Google Scholar 

  32. Musiani M.M., Furlanetto F., Guerriero P. Electrodeposited Tl 2 O 3 -Matrix Composites II Electrocatalysis of Oxygen Evolution reaction on Tl 2 O 3 /Co 3 O 4 Composites. J. Electrochem. Soc. 1998; 145:555–560.

    CAS  Google Scholar 

  33. Kulesza P.S., Grzybowska B., Malik M.A., Galkowski M.T. Tungsten Oxides as Active Supports for Highly Dispersed Platinum Microcenters: Electrocatalytic Reactivity Toward Reduction of Hydrogen Peroxide and Oxygen. J. Electrochem. Soc. 1997; 144:1911–1917.

    CAS  Google Scholar 

  34. Spencer L.F.. Modern Electroforming. I Requirements and Mandrels. Metal Finishing. 1973; February:64–72.

    Google Scholar 

  35. Wearmouth W.R. Applications and Developments in Nickel Electroforming and Toolmaking. Metal Finishing. 1980; November:35–39.

    Google Scholar 

  36. Mehdizadeh S., Dukovic J., Andricacos P.C., Romankiw L.T., Cheh H. Y. The Influence of Lithographic Patterning on Current Distribution in Electrodeposition: Experimental Study and Mass-Transfer Effects. J. Electrochem. Soc. 1993; 140:3497–3505.

    CAS  Google Scholar 

  37. Romankiw L.T. Electroforming of Electronic Devices. Plat. And Surf. Finish. 1997; 84(1):10–15.

    CAS  Google Scholar 

  38. Brenner A. “Electrolysis of Nonaqueous Systems.” In Advances in Electrochemistry and Electrochemical Engineering. C.W. Tobias, ed. Vol. 5: pp.205–248. New York: Interscience Publishers, 1967

    Google Scholar 

  39. Popovych O., Tomkins R.P.T., Nonaqueous Solution Chemistry, New York: John Wiley & Sons, 1981.

    Google Scholar 

  40. Lowenheim F. A., Modern Electroplating, Third Edition, New York: John Wiley & Sons, 1974.

    Google Scholar 

  41. Capuano G.A., Davenport W.G. Electrodeposition of Aluminum from Alkylbenzebe Electrolytes. J. Electrochem. Soc. 1971; 118:1688–1695.

    CAS  Google Scholar 

  42. Capuano G.A., Davenport W.G. Cathodic Polarization of Aluminum in Alkylbenzene Electrolytes. J. Electrochem. Soc. 1984; 131:2595–2600.

    CAS  Google Scholar 

  43. Biallazor S. Lisowska-Oleksiak A. The Modification of Aromatic Electrolytes for Electrodeposition of Aluminum. J. Appl. Electrochem. 1990; 20:590–595.

    Article  CAS  Google Scholar 

  44. Mc Chesney M. Electrodeposited Aluminum. Plating and Surface Finishing. 1995; 82(10):42.

    Google Scholar 

  45. Safranik W.H., The Properties of Elctrodeposited Metals and Alloys, Second Edition, Orlando, FL: American Electroplaters and Surface Finishers Society, 1986.

    Google Scholar 

  46. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem. 1982; 21:1263–1265.

    CAS  Google Scholar 

  47. Lin Y.F., Sun I.W. Electrodeposition of Zinc from a Mixture of ZincChhloride and Neutral Aluminum-Chloride-1-Methyl-3-Ethylimidazolium Chloride Molten Salt. J. Electrochem. Soc. 1999; 146:1054–1059.

    CAS  Google Scholar 

  48. Moffat T.P. Electrodeposition of Al-Cr Metallic Glasses. J. Electrochem. Soc. 1994; 141:L115–L117.

    CAS  Google Scholar 

  49. Mitchell J.A., Pitner W.R., Hussey C.L.. Stafford G.R. Electrodeposition of Cobalt and Cobalt-Aluminum Alloys from a Room temperature Chloroaluminate Molten Salt. J. Electrochem. Soc. 1996; 143:3448–3455.

    CAS  Google Scholar 

  50. Pitner W.R., Hussey C.L. Electrodeposition of Zinc from the Lewis Acid Aluminum Chloride-1-Methyl-3Ethylimidazolium Chloride Room Temperature Molten Salt. J. Electrochem. Soc. 1997; 144:3095–3103.

    CAS  Google Scholar 

  51. Lee J.J., Bae I.T., Sherson D.A., Miller B., Wheeler K.A. Underpotential Deposition of Aluminum and Alloy Formation on Polycrystalline Gold Electrode from AlCl 3 /EMIC Room Temperature Molten Salts. J. Electrochem. Soc. 2000; 147:562–566.

    CAS  Google Scholar 

  52. Chen P.Y., Lin M.C., Sun I.W. “Electrodeposition of Cu-Zn Alloy from Acidic ZnCl 2 -EMIC Molten Salt”, J. Electrochem. Soc. 2000; 147:3350–3355.

    CAS  Google Scholar 

  53. Landolt D. Fundamental Aspects of Electropolishing. Electrochim. Acta. 1987; 32:1–11.

    CAS  Google Scholar 

  54. Mathieu J.B., Mathieu H. J., Landolt D. Electropolishing of Titanium in Perchloric Acid-Acetic Acid Solution. I. Auger Spectroscopy Study of Anodic Film, J. Electrochem. Soc. 1978; 125:1039–1043.

    CAS  Google Scholar 

  55. Mathieu J. B., Landolt D. Electropolishing of Titanium in Perchloric Acid-Acetic Acid Solution. II. Polarization and Stoichiometry. J. Electrochem. Soc. 1978; 125:1044–1049.

    CAS  Google Scholar 

  56. Piotrowski O., Mandore C., Landolt D., Electropolishing of Tantalum in Sulfuric Acid-Methanol Electrolyte. Electrochim. Acta. 1999; 44:3389–3399.

    Article  CAS  Google Scholar 

  57. Sautebin R., Landolt D. Anodic Leveling Under Secondary and Tertiary Current Distribution Conditions, J. Electrochem. Soc., 1982; 129:946–953.

    CAS  Google Scholar 

  58. Vidal R., West A.C., Copper Electropolishing in Concentrated Phosphoric Acid, J. Electrochem. Soc. 1995; 142:2682–2694.

    CAS  Google Scholar 

  59. Novak M., Reddy A. K. N., Wroblowa H. An Ellipsometric Study of Surface Films on Copper Electrodes Undergoing Electropolishing. J. Electrochem. Soc. 1970; 117:733–737.

    Google Scholar 

  60. Glarum S.H., Marshall J.H. The Anodic Dissolution of Copper into Phosphoric Acid. I. Voltammetric and Oscillatory Behavior. J. Electrochem. Soc. 1985; 132:2872–2878.

    CAS  Google Scholar 

  61. Datta M., Landolt D. On the Influence of Electrolyte Concentration, pH and Temperature on Surface Brightening of Nickel Under ECM Conditions. J. Appl. Electrochem. 1997; 7:247–252.

    Google Scholar 

  62. Datta M, Landolt D., On the Role of Mass Transport in High Rate Dissolution of Iron and Nickel in ECM Electrolytes-II. Chlorate and Nitrate Solutions. Electrochim. Acta. 1980; 25:1263–1271.

    CAS  Google Scholar 

  63. Datta M., Shenoy R.V., Romankiw L.T. Recent Advances in the Study of Electrochemical Manufacturing. Journal of Engineering for Industry, 1996; 118(2):29.

    ISI  Google Scholar 

  64. Jain V.K., Dixit P.M., Pandey P.M. On the Analysis of the Electrochemical Spark Machining Process. International Journal of Machine Tools and Manufacturing, 1999; 39(1): 165.

    Google Scholar 

  65. Ni X, Mc Geough J.A., Greated C.A. A Study of Electrical Discharges in Electrolyte by High Speed Photography. J. Electrochem. Soc. 1993; 140(12):3505–3512.

    CAS  Google Scholar 

  66. Butterfield D, Sgarzi A. Method and Apparatus for Electrochemical Machining of Spray Holes in Fuel Injection. US Patent, 5,026,462 (1991).

    Google Scholar 

  67. Finneran M.T., Finneran R.J. Electromyographic Electrode. U.S. Patent, 6,047,202 (2000).

    Google Scholar 

  68. Neufeld P., Ali H.O. The Influence of Anions on the Structure of Porous Anodic Al 2 O 3 Films Grown in Alkaline Electrolytes. J. Electrochem. Soc. 1973; 120:479–484.

    CAS  Google Scholar 

  69. Farnann I., Durpee R., Jeong Y., Thompson G.E., Wood G.C., Forty A. Structural Chemistry of Anodic Alumina. Thin Solid Films. 1989; 173:209–215.

    Google Scholar 

  70. Thompson G.E., Fumeaux R.C., Goode J.S., Wood G. C. Porous Anodic Films Formation on Aluminum Substrates in Phosphoric Acid. Trans. Inst. Met. Finish. 1978; 56:159–167.

    CAS  Google Scholar 

  71. Patermarakis G., Moussoutzanis K. Mathematical Models for the Anodization Conditions and Structural Features of Porous Anodic Al 2 O 3 Films on Aluminum. J. Electrochem. Soc. 1995; 142:737–743.

    CAS  Google Scholar 

  72. Patermarakis G. Development of a Theory for the Determination of the Composition of the Anodizing Solution Inside the Pores During the Growth of Porous Anodic Al 2 O 3 Films on Aluminum by a Transport Phenomenon Analysis. J. Electroanal. Chem., 1998; 447:25–41.

    Article  CAS  Google Scholar 

  73. Patermarakis G., Papandreadis N., Effect of the Structure of Porous Anodic Al 2 O 3 Films on the Mechanism of Their Hydration and Pore Closure During Hydrothermal Treatment. Electrochim. Acta. 1993; 38:1413–1418.

    CAS  Google Scholar 

  74. Patermarakis G., Karayannis H.S. The Mechanism of Growth of Porous Anodic Al 2 O 3 Films on Aluminum at High Film Thickness. Electrochim. Acta. 1995; 40:2647.

    CAS  Google Scholar 

  75. Young L., Anodic Oxide Films, London: Academic Press, 1961.

    Google Scholar 

  76. Brace A.W., Sheasby P.G., The Technology of Anodizing Aluminum., Stonehouse, Glos. Technology Limited,, 1979.

    Google Scholar 

  77. Henley V.F., Anodic Oxidation of Aluminum and its Alloys, Oxford: Pergamon Press, 1982.

    Google Scholar 

  78. Mansfeld F., Zhang G., Chen C., Evaluation of Sealing Methods for Anodized Aluminum Alloys with Electrochemical Impedance Spectroscopy (EIS), Plat. and Surf. Finish., 1997; 84(12):72–81.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Electroplating and Surface Finishing. In: Fundamental Aspects of Electrometallurgy. Springer, Boston, MA. https://doi.org/10.1007/0-306-47564-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47564-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47269-5

  • Online ISBN: 978-0-306-47564-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics