Skip to main content

Guillotine Cut in Approximation Algorithms

  • Chapter
  • 662 Accesses

Part of the book series: Applied Optimization ((APOP,volume 66))

Abstract

The guillotine cut is one of main techniques to design polynomial-time approximation schemes for geometric optimization problems. This article is a short survey on its history and current developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems, Proc. 37th IEEE Symp. on Foundations of Computer Science, (1996) pp. 2–12.

    Google Scholar 

  2. S. Arora, Nearly linear time approximation schemes for Euclidean TSP and other geometric problems, IProc. 38th IEEE Symp. on Foundations of Computer Science, (1997) pp. 554–563.

    Google Scholar 

  3. S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems, Journal of the ACM 45 (1998) 753–782.

    MathSciNet  MATH  Google Scholar 

  4. X. Cheng, J.-M. Kim and B. Lu, A polynomial time approximation scheme for the problem of interconnecting highways, to appear in Journal of Combinatorial Optimization.

    Google Scholar 

  5. X. Cheng, B. DasGupta, and B. Lu, A polynomial time approximation scheme for the symmetric rectilinear Steiner arborescence problem, to appear in Journal of Global Optimization.

    Google Scholar 

  6. D.Z. Du, F.K. Hwang, M.T. Shing and T. Witbold: Optimal routing trees, IEEE Transactions on Circuits 35 (1988) 1335–1337.

    Google Scholar 

  7. D.-Z. Du, L.-Q. Pan, and M.-T. Shing, Minimum edge length guillotine rectangular partition, Technical Report 0241886, Math. Sci. Res. Inst., Univ. California, Berkeley, 1986.

    Google Scholar 

  8. D.-Z. Du, D.F. Hsu, and K.-J Xu, Bounds on guillotine ratio, Con-gressus Numerantium 58 (1987) 313–318.

    MathSciNet  Google Scholar 

  9. D.-Z. Du, On heuristics for minimum length rectangular partitions, Technical Report, Math. Sci. Res. Inst., Univ. California, Berkeley, 1986.

    Google Scholar 

  10. D.-Z. Du and Y.-J. Zhang: On heuristics for minimum length rectilinear partitions, Algorithmica, 5 (1990) 111–128.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Gonzalez and S.Q. Zheng, Bounds for partitioning rectilinear polygons, Proc. 1st Symp. on Computational Geometry, 1985.

    Google Scholar 

  12. T. Gonzalez and S.Q. Zheng, Improved bounds for rectangular and guillotine partitions, Journal of Symbolic Computation 7 (1989) 591–610.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lingas, R. Y. Pinter, R. L. Rivest, and A. Shamir, Minimum edge length partitioning of rectilinear polygons, Proc. 20th Allerton Conf. on Comm. Control and Compt., Illinos, 1982.

    Google Scholar 

  14. A. Lingas, Heuristics for minimum edge length rectangular partitions of rectilinear figures, Proc. 6th GI-Conference, Dortmund, January 1983 (Springer-Verlag).

    Google Scholar 

  15. C. Levcopoulos, Fast heuristics for minimum length rectangular partitions of polygons, Proc 2nd Symp. on Computational Geometry, 1986.

    Google Scholar 

  16. B. Lu and L. Ruan, Polynomial time approximation scheme for the rectilinear Steiner arborescence problem, Journal of Combinatorial Optimization 4 (2000) 357–363.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.S.B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem. Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, (1996) pp. 402–408.

    Google Scholar 

  18. J.S.B. Mitchell, A. Blum, P. Chalasani, S. Vempala, A constant-factor approximation algorithm for the geometric problem k-MST in the plane SIAM J. Comput. 28 (1999), no. 3, 771–781.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.S.B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: Part II-A simple polynomial-time approximation scheme for geometric, TSP, and related problem, SIAM J. Comput. 29 (1999), no. 2, 515–544.

    MathSciNet  Google Scholar 

  20. J.S.B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: Part III-Faster polynomial-time approximation scheme for geometric network optimization, preprint, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cheng, X., Du, DZ., Kim, JM., Ngo, H.Q. (2002). Guillotine Cut in Approximation Algorithms. In: Murphey, R., Pardalos, P.M. (eds) Cooperative Control and Optimization. Applied Optimization, vol 66. Springer, Boston, MA. https://doi.org/10.1007/0-306-47536-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47536-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0549-7

  • Online ISBN: 978-0-306-47536-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics