Skip to main content

Calcium Pyrophosphate Crystal Salt forms and the Influence of Phosphocitrate

  • Chapter
Book cover Advances in Crystal Growth Inhibition Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Brown, J.R. Lehr, J.P. Smith, and A.W. Frazier. Preparation and characterization of some calcium pyrophosphates. J Agricultural and Food Chemistry. 11:214 (1963).

    CAS  Google Scholar 

  2. D.J. McCarty, N.N. Kohn, and J.S. Faires. The significance of calcium pyrophosphate crystals in the synovial fluid of arthritis patients; the “pseudogout” syndrome. Ann Intern Med. 56: 711 (1962).

    CAS  Google Scholar 

  3. L.M. Ryan and H.S. Cheung. The role of crystals in osteoarthritis, in: Osteoarthritis, Rheumatic Diseases of America. K.D. Brandt, ed; WB Saunders Co. Philadelphia. 25:257 (1999).

    Google Scholar 

  4. K.P.H. Pritzker. Calcium pyrophosphate crystal arthropathy: a biomineralization disorder. Human Pathology 17:543 (1986).

    CAS  Google Scholar 

  5. R.A. Terkeltaub. Pathogenesis and treatment of crystal-inducedinflammation, in: Arthritis and Allied Conditions. A Textbook of Rheumatology. W.J. Koopman, ed; Wlliams and Wilkins. Baltimore. MD 2085 (1997).

    Google Scholar 

  6. W.E. Brown and T.M. Gregory. Calcium pyrophosphate crystal chemistry. Arthritis and Rheum. 19:446 (1976).

    Article  CAS  Google Scholar 

  7. L.M. Ryan, I.V. Kurup, B.A. Derfus and V.M. Kushnaryov. ATP-induced chondrocalcinosis. Arthritis Rheum. 35: 1520 (1992).

    CAS  Google Scholar 

  8. K.P.H. Pritzker. Calcium pyrophosphate crystal formation and dissolution, in: Calcium Phosphates in Biological and lndustrial systems. Z. Amjad, ed; Chpt. 12: 277 Kuwer Acad. Publ. Dordrecht. Netherlands (1998).

    Google Scholar 

  9. D.J. McCarty, D.W. Palmer, and P.B. Halverson. Clearance of calcium pyrophosphate dihydrate crystals in vivo. I. Studies using 169yb labelledtriclinic crystals. ArthritisRheum. 22:718 (1979).

    CAS  Google Scholar 

  10. H.M. Burt and J.K. Jackson. Characterization and membranolytic effects of triclinic calcium pyrophosphate crystals. J Rheum. 14:968 (1987).

    CAS  Google Scholar 

  11. P-T. Cheng, K.P.H. Pritzker, M.E. Adams, S.C. Nyburg, and S.A. Omar. Calcium pyrophosphate crystal formation in aqueous solutions. JRheum. 7: 609 (1980).

    CAS  Google Scholar 

  12. N.S. Mandel and G.S. Mandel. Calcium pyrophosphate crystal deposition in model systems in: Rheum Disease Clinics of North America 14: 321 (1988).

    CAS  Google Scholar 

  13. N. Mandel, and G. Mandel. A model for human calcium pyrophosphate crystal deposition disease. Crystallization kinetics in a gelatin matrix model. Scanning Electron Microscopy IV: 1779 (1984).

    Google Scholar 

  14. K.P.H. Pritzker, P-T. Cheng, M.E. Adams, and S.C. Nyburg. Calcium pyrophosphate dihydrate crystal formation in model hydrogels. J of Rheumatology. 5:469 (1978)

    CAS  Google Scholar 

  15. G. Williams and J.D. Sallis. Structure-activity relationship of inhibitors of hydroxyapatite formation. Biochem J. 184: 181 (1979).

    CAS  Google Scholar 

  16. W.P. Tew, C. Mahle, J. Benavides, J.E. Howard, and A.L. Lehninger. Synthesis and characterization of phosphocitrate, a potent inhibitor of hydroxyapatite crystal growth. Biochemistty.l9:1983 (1980).

    Google Scholar 

  17. G. Williams and J.D. Sallis. Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calc Tissue Int. 34: 169 (1982).

    CAS  Google Scholar 

  18. J.D. Sallis, N.F.G. Parry, J.D. Meehan, H. Kamperman, and M.E. Anderson. Controlling influence of phosphocitrate in vitro and in vivo on calcium oxalate crystal formation and growth. Scanning Microscopy 9: 127 (1995).

    CAS  Google Scholar 

  19. A. Wierzbicki, C.S. Sikes, J.D. Sallis, J.D. Madura, E.D. Stevens, and K.L. Martin. Scanning electron microscopy and molecular modeling of inhibition of calcium oxalate monohydrate crystal growth by citrate and phosphocitrate. Calc Tissue Int. 56:297 (1995).

    CAS  Google Scholar 

  20. J.D. Sallis, W. Juckes, and M.E. Anderson. Phosphocitrate: Potential to influence deposition of scaling salts and corrosion. In: Mineral Scale Formation and Inhibition (Z. Amjad, ed.). Plenum Press, NY. Chapt.8: 87 (1996).

    Google Scholar 

  21. H.S. Cheung, I.V. Kurup, J.D. Sallis, and L.M. Ryan. Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem. 271:28082 (1996).

    CAS  Google Scholar 

  22. J.D. Sallis, R. Thomson, B. Rees, and R. Shankar. Reduction of infection stones in rats by combination antibiotic and phosphocitrate therapy. J Urol. 140: 1063 (1989).

    Google Scholar 

  23. A. Wierzbicki, J.D. Sallis, E.D. Stevens, M. Smith, and C.S. Sikes. Crystal growth and molecular modeling studies of inhibition of struvite by phosphocitrate. Calc Tissue Int. 61:216 (1997).

    CAS  Google Scholar 

  24. J.D. Sallis, R. Shankar. B. Rees, and R. Thomson. Protection of crystal-induced polymorphonuclear leukocyte membranolysis by phosphocitrate. Biochem Med Metab Biol. 41:56 (1989).

    Article  CAS  Google Scholar 

  25. D. Nair, R.P. Misra, J.D. Sallis, and H.S. Cheung. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem. 272: 18920 (1997).

    CAS  Google Scholar 

  26. L.M. Ryan and D.J. McCarty. Calcium pyrophosphate crystal deposition disease, pseudogout, and articular chondrocalcinosis, in: Arthritis and Allied Condition. A Textbook of Rheumatology. W.J. Koopman, ed; Williams and Wilkins, Baltimore, Md. 2103 (1997).

    Google Scholar 

  27. J.D. Sallis. Structure/performance relationships of phosphorous and carboxyl containing additives as calcium phosphate crystal growth inhibitors, in: Calcium Phosphates in Biological and Industrial Systems. Z. Amjad, ed; Kluwer Acad. Publ. Dordrecht, Netherlands. 173 (1998).

    Google Scholar 

  28. M. Johnsson, C.F. Richardson, J.D. Sallis, and G.H. Nancollas. Adsorption and mineralization effects of citrate and phosphocitrate on hydroxyapatite. Calc Tissue Int 49: 134 (1991).

    CAS  Google Scholar 

  29. V.K. Sharma, M. Johnsson, J.D. Sallis, and G.H. Nancollas. Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate. Langmuir. 8:676 (1992).

    Article  CAS  Google Scholar 

  30. A. Wierzbicki and H.S. Cheung. Molecular modeling of inhibition of crystals of calcium pyrophosphate by phosphocitrate. Theochem. 454:287 (1998).

    CAS  Google Scholar 

  31. N.S. Mandel. The crystal structure of calcium pyrophosphate dihydrate. Acta Ctystallographica. B31:1730 (1973).

    Google Scholar 

  32. G.S. Mandel, K.M. Renne, A.M. Kolbach, A.M. Kaplan, J.D. Miller, and N.S. Mandel. Calcium pyrophosphate crystal deposition disease: preparation and characterization of crystals. J of Crystal Growth. 87: 453 (1988).

    CAS  Google Scholar 

  33. T. Shinozaki, Y. Xu, T.F. Cruz, and K.P.H. Pritzker. Calcium pyrophosphate dihydrate (CPPD) crystal dissolution by alkaline phosphatase: interaction of alkaline phosphatase on CPPD crystals. J Rheum. 22:117 (1995).

    CAS  Google Scholar 

  34. K.D. Altria, M. Wallberg, and D. Westerlund. Separation of a range of cations by nonaqueous capillary electrophoresis using indirect and direct detection. J Chromatogr. B 714:99 (1998).

    Google Scholar 

  35. C.H. Fiske and J. Subbarow. Colorimetric detection of phosphorus. J Biol Chem. 66:375 (1925).

    CAS  Google Scholar 

  36. P-T. Cheng and K.P.H. Pritzker. The effect of calcium and magnesium ions on calcium pyrophosphate crystal formation in aqueous solutions. J Rheum. 8: 772 (1981).

    CAS  Google Scholar 

  37. M. Doherty and P.A. Dieppe. Double blind, placebo controlled trial of magnesium carbonate in chronic calcium pyrophosphate arthropathy. Ann Rheum. Dis. 42 (suppl): 106 (1983).

    Google Scholar 

  38. T. Shinozaki and K.P.H. Pritzker. Polyamines enhance calcium pyrophosphate dihydrate crystal dissolution. J Rheumatol 22: 1907 (1995).

    CAS  Google Scholar 

  39. H.E. Krug, M.L. Mahowald, P.B. Halverson, J.D. Sallis, and H.S. Cheung. Phosphocitrate prevents disease progression in murine progressive ankylosis. Arthritis and Rheumatism. 36: 1603 (1993).

    CAS  Google Scholar 

  40. A.L. Lehninger. The possible role of mitochondria and phosphocitrate in biological calcification, in: Biomineralization and Biological Metal Accumulation. P. Westbroek and E. W. de Jong, eds., D. Reidel Publishing Co., NY. 107 (1983).

    Google Scholar 

  41. G. Williams and J.D. Sallis. The sources of phosphocitrate and its role as an inhibitor of calcium phosphate and calcium oxalate crystallization, in: Urolithiasis. L.H. Smith and W.R. Finlayson, ed., Penum Press. NY. 569 (1981).

    Google Scholar 

  42. J.D. Meehan and J.D. Sallis. Kidney selective prodrugs of phosphocitrate: Synthesis and in vivo hydrolysis of γ-glutamyl derivatives of phosphocitrate and their in vivo influence on nephrocalcinosis. Pharm Sci. 1: 289 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sallis, J.D., Wierzbicki, A., Cheung, H.S. (2002). Calcium Pyrophosphate Crystal Salt forms and the Influence of Phosphocitrate. In: Amjad, Z. (eds) Advances in Crystal Growth Inhibition Technologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-46924-3_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46924-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46499-7

  • Online ISBN: 978-0-306-46924-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics