Skip to main content

Part of the book series: Topics in Applied Chemistry ((TAPP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper & Row, New York (1967).

    Google Scholar 

  2. J. E. Wertz and J. R. Bolton, Electron Spin Resonance, Elementary Theory and Practical Applications, McGraw-Hill, New York (1972).

    Google Scholar 

  3. N. M. Atherton, Electron Spin Resonance, Theory and Applications, John Wiley & Sons, New York (1973).

    Google Scholar 

  4. F. Gerson, High Resolution E.S.R. Spectroscopy, Verlag Chemie, Weinheim (1970).

    Google Scholar 

  5. F. Bruin, F. W. Heineken, M. Bruin, and A. Zahlan, ESR spectrum of the 4,4′-dipyridyl radical, J. Chem. Phys. 36, 2783–2785 (1962).

    Article  CAS  Google Scholar 

  6. J. R. Bolton, A. Carrington, and J. dos Santos-Veiga, Electron spin resonance studies of semiquinones and related nitrogen heterocyclic molecules in acid solution, Mol. Phys. 5, 465–473 (1962).

    CAS  Google Scholar 

  7. C. S. Johnson, Jr. and H. S. Gutowsky, High-resolution ESR spectra ofphotochemically generated free radicals: The Viologens, J. Chem. Phys. 39, 58–62 (1963).

    CAS  Google Scholar 

  8. H. M. McConnell, Indirect hyperfine interaction in the paramagnetic resonance spectra ofaromatic free radicals, J. Chem. Phys. 24, 764–766 (1956).

    CAS  Google Scholar 

  9. R. L. Barton and G. K. Fraenkel, Electron spin resonance spectra of methyl-substituted dihydropyrazine cations and related radicals, J. Chem. Phys. 41, 1455–1468 (1964).

    CAS  Google Scholar 

  10. C. Lamy, D. Guerrin-Ouler, C. Niccolin, and C. Siero, EPR studies and INDO calculations on the molecular structure of radicals derived from some N-alkylpyridinium salts, Mol. Phys. 34, 161–170 (1977).

    Google Scholar 

  11. A. G. Evans, J. C. Evans., and M. W. Baker, Study of bipyridyl radical cations. Part 5. Effect of structure on the dimerisation equilibrium, J. Chem. Soc., Perkin Trans. 2 1977, 1787–1789.

    Google Scholar 

  12. D. W. Clack, J. C. Evans, A. Y. Obaid, and C. C. Rowlands, The assignment of the hyperfine coupling constants for the pyridyl protons in aryl and alkyl N-substituted bipyridylium radical cations, Tetrahedron 39, 3615–3620 (1983).

    Article  CAS  Google Scholar 

  13. A. L. Rieger and P. H. Rieger, Magnetic resonance studies of some bipyridylium dications and cation radicals, J. Chem. Phys. 88, 5845–5851 (1984).

    CAS  Google Scholar 

  14. J. C. Evans, A. G. Evans, N. H. Nouri-Sorkhabi, A. Y. Obaid, and C. C. Rowlands, An electron spin resonance, ENDOR, and TRIPLE resonance study of methyl-substituted N,N′-diphenyl-4,4′-bipyridylium dichloride radical cations, J. Chem. Soc., Perkin Trans. 2 1985, 315–318.

    Google Scholar 

  15. D. W. Clack, J. C. Evans, A. Y. Obaid, and C. C. Rowlands, An electron spin, ENDOR, and TRIPLE resonance and INDO study of fluorine-substituted N,N′-diphenyl-4,4′-bipyridynium radical cations, J. Chem. Soc., Perkin Trans. 2 1985, 1653–1657.

    Google Scholar 

  16. P. Crouigneau, O. Enea, and C. Lamy, A comparative electron spin resonance study of adsorbed cation-radicals generated “in situ” by electrochemical and photochemical reduction of some viologen derivatives, Nouv. J. Chim. 10, 539–543 (1986).

    CAS  Google Scholar 

  17. O. Enea, P. Crouigneau, J. Moser, M. Grätzel, and S. Hunig, On the pimerization of bridged viologen radicals photoproduced at the surface of illuminated TiO2 sols, New J. Chem. 15, 267–271 (1991).

    CAS  Google Scholar 

  18. J. G. Gaudiello, P. K. Gosh, and A. J. Bard, Polymer films on electrodes. 17. The application of simultaneous electrochemical and electron spin resonance techniques for the study of two viologen-based chemically modified electrodes, J. Am. Chem. Soc. 107, 3027–3032 (1985).

    CAS  Google Scholar 

  19. J. R. White and A. J. Bard, Clay modified electrodes. Part IV. The electrochemistry and electron spin resonance of methyl viologen incorporated into montmorillonite films, J. Electroanal. Chem. 197, 233–244 (1986).

    Article  CAS  Google Scholar 

  20. P. M. S. Monk, R. D. Fairweather, M. D. Ingram, and J. A. Duffy, Evidence for the product of the viologen comproportionation reaction being a spin-paired radical cation dimer, J. Chem. Soc., Perkin Trans. 2 1992, 2039–2041.

    Google Scholar 

  21. M. Ata, M. Aoyagi, Y. Kubozono, and Y. Gondo, Spectroscopic investigation of methyl viologen radical cation included in β-cyclodextrin, Chem. Lett. 1989, 341–344.

    Google Scholar 

  22. Z. Porat, Y.-M. Tricot, and I. Rubinstein, New multicharged viologen derivatives. Part 2. Unusual electrochemical behaviour in solution, J. Electroanal. Chem. 315, 225–243 (1991).

    CAS  Google Scholar 

  23. P. D. Sullivan and M. L. Williams, ESR and X-ray study of the structure of Diquat (dy6,7-dihydrodipyridol[l,2-a:2′,1′-c]pyrazinedium) cation radical and dication, J. Am. Chem. Soc. 98, 1711–1716 (1976).

    CAS  Google Scholar 

  24. K. B. Yoon and J. K. Kochi, Direct observation of superoxide electron transfer with viologens by immobilization in zeolite, J. Am. Chem. Soc. 110, 6586–6588 (1988).

    CAS  Google Scholar 

  25. K. Takahashi, T. Nihira, K. Akiyama, Y. Ikegami, and E. Fukuyo, Synthesis and characterization of new conjugation-extended viologens involving a central aromatic linking group, J. Chem. Soc., Chem. Commun., 1992, 620–622.

    Google Scholar 

  26. N. S. Sariciftci, M. Mehring, K. U. Gaudl, P. Bäuerle, H. Neugebauer, and A. Neckel, Third generation of conducting polymers: Spectroelectrochemical investigations on viologen functionalized poly(3-alkylthiophenes), J. Chem. Phys. 96, 7164–7170 (1992).

    Article  CAS  Google Scholar 

  27. M. Lapkowski and G. Bidan, Electrochemical, spectroelectrochemical and EPR properties of poly(pyrrole-viologens), J. Electroanal. Chem. 362, 249–256 (1993).

    Article  CAS  Google Scholar 

  28. K. Yamamura, Y. Okada, S. Ono, K. Kominami, and I. Tabushi, New liquid crystalline viologens exhibiting electric stimulus-response behavior, Tetrahedron Lett. 28, 6475–6478 (1987).

    Article  CAS  Google Scholar 

  29. A. E. Kaifer and A. J. Bard, Micellar effects on the reductive electrochemistry of methylviologen, J. Phys. Chem. 89, 4876–4880 (1985).

    Article  CAS  Google Scholar 

  30. K. Suga, K. Maemura, M. Fujihira, and S. Aoyagui, ESR studies of the dynamic properties of ion radicals captured by surfactant micelles, Bull Chem. Soc. Jpn. 60, 2221–2226 (1987).

    CAS  Google Scholar 

  31. M. J. Colaneri, L. Kevan, D. H. P. Thompson, and J. K. Hurst, Variations of alkylmethylviologen radical cation-water interactions in micelles and vesicles from ESEM spectroscopy: Effect ofalkyl chain length, J. Phys. Chem. 91, 4072–4077 (1987).

    Article  CAS  Google Scholar 

  32. M. J. Colaneri, L. Kevan, and R. Schmehl, An electron spin resonance study of charge separation in frozen sodium dodecyl sulfate micellar solutions containing tris(2,2′-bipyridine)ruthenium (II) complexes and alkylmethylviologens J. Phys. Chem. 93, 397–401 (1989).

    Article  CAS  Google Scholar 

  33. M. Sakaguchi and L. Kevan, Photoionization of alkylmethylviologens in vesicles: Effects of the alkyl chain length in alkylmethylviologen and radical conversion to surfactant radicals, J. Phys. Chem. 93, 6039–6043 (1989).

    Article  CAS  Google Scholar 

  34. H. J. D. McManus and L. Kevan, Electron spin resonance, electron spin echo, and electron nuclear double resonance investigations of the photoreduction yield of a series of alkylmethylviologens in dihexadecyl phosphate vesicles: Effect of added cholesterol, J. Phys. Chem 95, 10172–10178 (1991)

    Article  CAS  Google Scholar 

  35. H. J. D. McManus, Y. S. Kang, and L. Kevan, Electron spin resonance, electron spin echo, and electron nuclear double resonance studies of the photoreduction yield of a series of alkylmethyl-viologens in sodium dodecyl sulfate and dodecyltrimethylammonium chloride micelles; Effect of the alkyl chain length of the viologen, J. Phys. Chem. 96, 5622–5628 (1992).

    CAS  Google Scholar 

  36. M. Sakaguchi, P. Baglioni, and L. Kevan, Photoreduction of alkylmethylviologens with α tocopherol in dioctadecyldimethylammonium chloride vesicles, J. Phys. Chem. 96, 2772–2776 (1992).

    Article  CAS  Google Scholar 

  37. H. Nakamura, S. Usui, Y. Matsuda, T. Matsuo, K. Maeda, and T. Azumi, Time-resolved electron spin resonance spectra of linked radical pairs on laser excitation of zinc tetraphenylporphyrin-viologen systems, J. Phys. Chem. 97, 534–536 (1993).

    CAS  Google Scholar 

  38. K. Takuma, T. Sakamoto, T. Nagamura, and T. Matsuo, Novel properties of the self-assembling amphiphatic viologen system. 1. A study of electron-exchange reactions in micellar systems, J. Phys. Chem. 85, 619–621 (1981).

    Article  CAS  Google Scholar 

  39. F. Feichtmayr and G. Scheibe, Photodissociation into radicals as the cause of phototropy in quinol derivatives, Z. Naturforsch. 13B, 51 (1958).

    CAS  Google Scholar 

  40. D. A. Wiersma and W. C. Nieuwpoort, Electron spin resonance of photochromic β-tetrachloro-α-ketonaphthalene, Chem. Phys. Lett. 2, 637–639 (1968).

    CAS  Google Scholar 

  41. G. Kortüm and G. Greiner, Zur Photochromie des 2,3,4,4-Tetrachlor-l-keto-dihydronaphthalins (β-TkN) Ber. Bunsenges. Phys. Chem. 77, 459–465 (1973).

    Google Scholar 

  42. F. P. A. Zweegers and C. A. G. O. Varma, ESR oftriplet states in single crystals ofphotochromic 2,3,4,4-tetrachloro-l-keto-l,4-dihydronaphthalene (β-TKN) Chem. Phys. 12, 231–235 (1976).

    Article  CAS  Google Scholar 

  43. F. P. A. Zweegers and C. A. G. O. Varma, Photochromism of 2,3,4,4-tetrachloro-l-oxo-1,4-dihydronaphthalene, J. Phys. Chem. 83, 1821–1828 (1979).

    Article  CAS  Google Scholar 

  44. R. C. Bertelson, in: Photochromism (G. H. Brown, ed.), Wiley-Interscience, New York (1971), and references therein.

    Google Scholar 

  45. T. Bercovici, R. Heiligman-Rim, and E. Fischer, Photochromism in spiropyrans, VI. Trimethy-lindolinobenzospiropyran and its derivatives, Mol. Photochem. 1, 23–55 (1969).

    CAS  Google Scholar 

  46. A. V. Zubkov, Polarization of electrons during the formation of radical pairs, Dokl. Akad. Nauk SSSR 216, 1095–1097 (1974); Chem. Abstr. 81, 104205j (1974).

    CAS  Google Scholar 

  47. J. M. McBride and G. T. Evans, Steady-state optical spin polarization from a spiropyran at 105 K. Possible evidence for a diradical, Chem. Phys. Lett 36, 41–45 (1975).

    Article  CAS  Google Scholar 

  48. G. T. Evans, Steady-state optical spin polarization. Theory of the high yield anisotropic ESR intensity, Chem. Phys. Lett. 36, 46–48 (1975).

    Article  CAS  Google Scholar 

  49. C. Lenoble and R. S. Becker, Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 6′-nitroindolinospiropyran, J. Phys. Chem. 90, 62–65 (1986).

    CAS  Google Scholar 

  50. M. Campredon, A. Samat, R. Guglielmetti, and A. Alberti, Double-trapping oftriplet biradicals in the cleavage of spiropyrans and spirooxazines, Gazz. Chim. Ital. 123, 261–264 (1993).

    CAS  Google Scholar 

  51. P. Maruthamuthu and J. C. Scaiano, Biradicals double trapping by nitric oxide. An electron spin resonance study, J. Phys. Chem. 82, 1588–1591 (1978).

    CAS  Google Scholar 

  52. M. Campredon, R. Guglielmetti, A. Samat, and A. Alberti, ESR studies on some spiropyrans, spironaphthopyrans, and spirooxazines, J. Chim. Phys. 91, 1830–1836 (1994).

    CAS  Google Scholar 

  53. V. Malatesta, F. Renzi., M. L. Wis, L. Montanari, M. Milosa, and D. Scotti, Reductive degradation of photochromic spiro-oxazines. Reaction of the merocyanine forms with free radicals, J. Org. Chem. 60, 5446–5448 (1995).

    Article  CAS  Google Scholar 

  54. V Malatesta, R. Millini, and L. Montanari, Key intermediate product of oxidative degradation of photochromic spirooxazines. X-ray crystal structure and electron spin resonance analysis of its 7,7,8,8-tetracyanoquinodimethane ion-radical salt, J. Am. Chem. Soc. 117, 6258–6264 (1995).

    Article  CAS  Google Scholar 

  55. J.-W. Zhou, Y.-T. Li, and X.-Q. Song, Investigation of the chelation of a photochromic spiropyran with Cu(II), J. Photochem. Photobiol., A87, 37–42 (1995).

    Google Scholar 

  56. L. A. Ulanova, E. V. Pykhtina, and B. V Tolkachev, EPR spectra and π-electronic structure of anion radicals ofnitro-substituted indoline spiropyran, Khim. Geterotsikl. Soedin. 11, 1477–1481 (1984); Chem. Abstr. 102, 112743a (1985).

    Google Scholar 

  57. M. Campredon, R. Guglielmetti, A. Samat, G. Gronchi, and A. Alberti, Radical anions from some photochromic nitro compounds. An electron paramagnetic resonance and electrochemical study, Res. Chem. Intermed. 19, 307–318 (1993).

    CAS  Google Scholar 

  58. A. Alberti, M. Campredon, G. Gronchi, and A. Samat, EPR and electrochemical studies of radicals from photochromic compounds, Mol. Cryst. Liq. Cryst. 246, 327–330 (1994).

    CAS  Google Scholar 

  59. M. Campredon, G. Giusti, R. Guglielmetti, A. Samat, G. Gronchi, A. Alberti, and M. Benaglia, Radical ions and germyloxyaminoxyls from nitrospiro[indoline-naphthopyrans]. A combined electrochemical and EPR study, J. Chem. Soc., Perkin Trans. 2 1993, 2089–2094.

    Google Scholar 

  60. A. Alberti, C. Barberis, M. Campredon, G. Gronchi, and M. Guerra, An EPR electrochemical, and ab initio investigation on the nature of the radical ions formed in the reduction of some photochromic compounds of the spiroindolinic series, J. Phys. Chem. 99, 15779–15784 (1995).

    Article  CAS  Google Scholar 

  61. A. T. Balaban, N. Negoita, and R. Baican, A new stable spiropyranic aminyloxide (nitroxide), Org. Magn. Res. 9, 553–554 (1977).

    CAS  Google Scholar 

  62. G. A. Russell, C. L. Myers, P. Bruni, F. A. Neugebauer, and R. Blankespoor, Semidiones. X. Semidione radical anions derived from indan-2.3-dione, coumaran-2.3-dione, thianaphthalenequi-none, isatin, and N-hydroxyisatin. Nitroxide radicals derived from isatin, dioxindole, oxindole, and other indole derivatives, J. Am. Chem. Soc. 92, 2762–2768 (1970).

    CAS  Google Scholar 

  63. P. Bruni and M. Colonna, Nitroxide and anion radicals derived from isatogen and related indole derivatives, Tetrahedron 29, 2425–2435 (1973).

    CAS  Google Scholar 

  64. A. T. Balaban, H. G. Aurich, J. Trösken, E. Brugger, D. Döpp, and K. H. Sailer, Aminyloxides (nitroxides) from 1-hydroxy-2-indolinones, Tetrahedron 30 739–744 (1974).

    Article  CAS  Google Scholar 

  65. C. Berti, M. Colonna, L. Greci, and L. Marchetti, Stable nitroxide radicals from phenylisatogen and arylimino-derivatives with organo-metallic compounds, Tetrahedron 31, 1745–1753 (1975).

    Article  CAS  Google Scholar 

  66. L. Marchetti, L. Greci, and M. Poloni, Nitroxide radicals from N-hydroxyisatin, Gazz. Chim. Ital. 107, 7–10 (1977).

    CAS  Google Scholar 

  67. B. Luccioni-Houzé, P. Nakache, M. Campredon, R. Guglielmetti, and G. Giusti, Synthesis of new photochromic compounds containing a spin-trap or a spin-label, Res. Chem. Intermed. 22, 449–458 (1996).

    Google Scholar 

  68. A. V. Zubkov, Paramagnetic products of the radiolysis of indoline spiropyrans, Khim. Vys. Energ. 8, 354–357 (1974); Chem. Abstr. 144151v (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Alberti, A. (2002). EPR and Radical Processes. In: Crano, J.C., Guglielmetti, R.J. (eds) Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46912-X_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46912-X_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45883-5

  • Online ISBN: 978-0-306-46912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics