Skip to main content

Photokinetics under Continuous Irradiation

  • Chapter
Organic Photochromic and Thermochromic Compounds

Part of the book series: Topics in Applied Chemistry ((TAPP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kellmann, L. Lindquist, S. Monti, F. Tfibel, and R. Guglielmetti, Primary processes in photoisomerisation of a nitrochromeme studied by nanosecond laser photolysis, J. Photochem. 21, 223–235 (1983).

    Article  CAS  Google Scholar 

  2. A. Kellmann, F. Tfibel, R. Dubest, P. Levoir, J. Aubard, E. Pottier, and R. Guglielmetti, Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran, J. Photochem. Photobiol. A 49, 63–73 (1989).

    CAS  Google Scholar 

  3. A. Kellmann, F. Tfibel, and R. Guglielmetti, Effect of substituents on the photochromism of a spiro(indoline-naphthoxazine) under laser excitation, J. Photochem. Photobiol. A 91, 131–136 (1995).

    CAS  Google Scholar 

  4. H. Kawata and S. Nizuma, Flash photolysis of 2,2′-3,3′-5,5′-6,6′ octophenyl 4,4′bi 4H pyran: Evidence for radical formation by photodissociation, J. Photochem. Photobiol A 48, 171–174, (1989).

    CAS  Google Scholar 

  5. N. K. Ernting and T. Arthen-Engeland, Photochemical ring-opening reaction of indolinospiropyrans studied by subpicosecond transient absorptioin, J. Phys. Chem. 97, 5502–5509 (1991).

    Google Scholar 

  6. J. Z. Zhang, B. J. Schwartz, J. C. King, and C. B. Harris, Ultrafast studies of photochromic spiropyrans in solution, J. Am. Chem. Soc. 114, 10921–10927 (1992).

    CAS  Google Scholar 

  7. N. Tamai, and H. Masuhara, Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction, Chem. Phys. Lett. 191, 189–194 (1992).

    Article  CAS  Google Scholar 

  8. A. D. Liu, A. D. Trifunac, and V. V. Krongauz, Photodissociation of hexaarylbiimidazole (direct and sensitized dissociation), J. Phys. Chem. 96, 207–211 (1992).

    CAS  Google Scholar 

  9. F. Wilkinson, D. R. Worrall, J. Hobley, L. Jansen and S. L. Williams, Picosecond time-resolved spectroscopy of the photocolouration reaction of photochromic naphthoxazine-spiro-indolines, J. Chem. Soc. Faraday Trans. 92, 1331–1336 (1996).

    Article  CAS  Google Scholar 

  10. V. Pimienta, D. Lavabre, G. Levy, J.C. Micheau, and J. P. Laplante, Bistable photochemical reactions, J. Mol. Liq. 63, 121–173 (1995).

    Article  CAS  Google Scholar 

  11. H.J. Kuhn, S.E. Braslavsky, and R. Schmidt, Chemical actinometry, Pure Appl. Chem. 61, 187–210 (1989).

    CAS  Google Scholar 

  12. J. L. Pozzo, A. Samat, and R. Guglielmetti, New photochromic 2,2-diphenyl-[2H]-chromenes annellated with nitrogenated six-membered ring, Mol. Cryst. Liq. Cryst. 246, 75–78 (1994).

    CAS  Google Scholar 

  13. R. Guglielmetti, R. Meyer, and C. Dupuy, Synthesis of a photochromic benzothiazolinic spiropyran, J. Chem. Educ. 50, 413–415 (1973).

    CAS  Google Scholar 

  14. B. Borderie, D. Lavabre, G. Levy, J. C. Micheau, and J. P. Laplante, A tentative mechanism for the bistability observed during irradiation of the triphenylimidazolyl radical dimer in a CSTR, J. Am. Chem. Soc. 112, 4105–4109 (1990).

    Google Scholar 

  15. G. Gauglitz, in: Photochromism, Molecules and Systems, H. Dürr and H. Bouas-Laurent, eds. Chapters 2 and 25, Elsevier, Amsterdam (1990).

    Google Scholar 

  16. G. Zimmerman, L. Y. Chow, and U J. Paik, The photochemical isomerization ofazobenzene, J. Am. Chem. Soc. 80, 3528–3531 (1958).

    CAS  Google Scholar 

  17. H. Mauser, D. J. Francis, and H.-J. Niemann, Zur kinetischen analyse von photoreaktionen, Z. Phys. Chem. N. F. 82, 318–333 (1972).

    CAS  Google Scholar 

  18. H. Mauser and J. Polster, Zur kinetischen analyse von linearen dunkelreaktionen und quasilinearen photoreaktionen, Z. Phys. Chem. N. F. 138, 87–105 (1983).

    CAS  Google Scholar 

  19. J. Polster and H. Mauser, Kinetic analysis ofquasilinear photoreactions by transformed absorbancetime equations, J. Photochem. Photobiol. A 43, 109–118 (1988).

    CAS  Google Scholar 

  20. M. D. Cohen and E. Fischer, Isosbestic points, J. Chem. Soc. 1962, 3044–3052.

    Google Scholar 

  21. J. Polster and H. Lachman, Spectrometric Titration, VCH Verlagsgesellschaft, Weinheim (1989).

    Google Scholar 

  22. B. Borderie, D. Lavabre, J. C. Micheau, and J. P. Laplante, Nonlinear dynamics, multiple steady states and oscillations in photochemistry, J. Phys. Chem. 96, 2953–2961 (1992).

    Article  CAS  Google Scholar 

  23. B. Borderie, D. Lavabre, G. Levy, J. P. Laplante, and J. C. Micheau, Single run benzophenone/benzhydrol actinometry by means of an exponential dilution photochemical microreactor, J. Photochem. Photobiol. A 56, 13–23 (1991).

    CAS  Google Scholar 

  24. C. G. Hatchard and C. A. Parker, A new sensitive chemical actionometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. (London) A235, 581 (1956).

    Google Scholar 

  25. J. Lee and H. H. Seliger, Quantum yield of the ferrioxalate actinometer, J. Chem. Phys. 40, 519–523 (1964).

    CAS  Google Scholar 

  26. K. C. Kurien, A modification to the ferrioxalate actinometer, J. Chem. Soc. (B) 1971, 2081–2082.

    Google Scholar 

  27. W. D. Bowman and J. N. Demas, Ferrioxalate actinometry. A warning on its correct use, J. Phys. Chem. 80, 2434–2440 (1976).

    Article  CAS  Google Scholar 

  28. D. E. Nicodem, M. L. P. F. Cabral, and J. C. N. Ferreira, The use of 0.15Mpotassium ferrioxalate as a chemical actinometer, Mol. Photochem 8, 213–238 (1977).

    CAS  Google Scholar 

  29. S. Hubig, Diplomarbeit, Tübingen (1980).

    Google Scholar 

  30. A. D. Baker, A. Casadavell, H. D. Gafney, and M. Gellender, Photochemical reactions of tris(oxalato)iron(III), J. Chem. Educ. 57, 314–315 (1980).

    CAS  Google Scholar 

  31. J. S. Connolly and T. H. Meyer, A convenient irradiation cell for ferrioxalate actiometry, J. Photochem. Photobiol. A 34, 145–146 (1981).

    CAS  Google Scholar 

  32. J. N. Demas, W. D. Bowman, E. F. Zalewski, and R. A. Velapoldi, Determination of the quantum yield of the ferrioxalate actinometer with electrically calibrated radiometers, J. Phys. Chem. 85, 2766–2771 (1981).

    Article  CAS  Google Scholar 

  33. E. Fischer, Ferrioxalate actinometry, EPA Newsletter, No. 21, p. 33 (1984); see also A. M. Braun, M. T. Maurette, and E. Oliveros, in: Photochemical Technology, John Wiley & Sons, New York (1991).

    Google Scholar 

  34. H. G. Heller and S. Oliver, Photochromic heterocyclic fulgides, Part 1: Rearrangement reactions of (E)-α-furylethylidene(isopropylidene)succinic anhydride, J. Chem. Soc., Perkin Trans. 11981, 197–201.

    Google Scholar 

  35. G. R. Seely and E. R. Shaw, Photoisomerisation of dimyristoylindigo: Rates in various solvents, J. Photochem. 24, 383–393 (1984).

    Article  CAS  Google Scholar 

  36. S. Tazuke, S. Kurihara, H. Yamaguchi, and T. Ikeda, Photochemically triggered physical amplification of photoresponsiveness, J. Phys. Chem. 91, 249–251 (1987).

    Article  CAS  Google Scholar 

  37. V.I. Minkin, N. V Volbuschko, M. S. Koroboy, and L. E. Nivorozhkin, Structural variation and responses in photochromic properties of spirocyclic molecular systems related to spirobenzopyrans, Mol. Cryst. Liq. Cryst. 246, 9–16 (1994).

    CAS  Google Scholar 

  38. R. Heiligman-Rim, Y. Hirshberg, and E. Fischer, Photochromism in some spiropyrans (III), J. Chem. Soc. 1961 156–163.

    Google Scholar 

  39. L. S. Meriwether, E. C. Breitner, and C. L. Sloan, The photochromism of metal dithizonates, J. Am. Chem. Soc. 87, 4441–4454 (1965).

    CAS  Google Scholar 

  40. C. Geosling, A. W. Adamson, and A. R. Gutierrez, Photochemical and kinetic studies of some metal dithizonate complexes, Inorg. Chim. Acta 29, 279–287 (1978).

    CAS  Google Scholar 

  41. G. Jones, S. H. Chiang, and P. T. Xuan, Energy storage in organic photoisomers, J. Photochem. 10, 1–18(1979).

    Article  CAS  Google Scholar 

  42. K. A. Muskat and E. Fischer, Structure, spectra, photochemistry and thermal reaction of the 4a,4b-dihydrophenanthrenes, J. Chem. Soc. (B) 1967, 662–678.

    Google Scholar 

  43. G. Gauglitz, Azobenzene as a convenient actinometer for the determination of quantum yields of photoreactions, J. Photochem. 5, 41–47 (1976).

    Article  CAS  Google Scholar 

  44. H. Langbein and R. Nöske, Zur photochromie des 3-methylthio-l,5-diphenylformazans(S-methyldithizons), Z. Chem. 23, 183–184 (1983).

    CAS  Google Scholar 

  45. G. Gauglitz, R. Goes, W. Stoob, and R. Raue, Determination of partial photochemical quantum yields of reversible photoisomerizations of stilbene-1 derivatives, Z. Naturforsch. 40a, 317–323 (1984).

    Google Scholar 

  46. T. I. Ho, T. M. Su, and T. C. Hwang, A convenient method of measuring quantum yields of photoisomerization of trans-stilbene, J. Photochem. Photobiol. A 41, 293–298 (1988).

    CAS  Google Scholar 

  47. Y. Yokoyama, T. Tamaka, T. Yamane, and Y. Kurita, Synthesis and photochromic behavior of 5-substituted indolylfiilgides, Chem. Lett. 1991, 1125–1128.

    Google Scholar 

  48. Y. Yokoyama, T. Yamani, and Y. Kurita, Photochromism of a protonated 5-dimethylaminoindolylfulgide: A model of a destructive readout for a photon mode optical memory. J. Chem. Soc., Chem. Commun. 1991, 1722–1724.

    Google Scholar 

  49. A. Tomoda, A. Kaneko, H. Tsuboi, and R. Matsushima, Photochromism of heterocyclic fulgides (relation between chemical structure and photochromic performance), Bull. Chem. Soc. Jpn 66, 330–333 (1993).

    CAS  Google Scholar 

  50. J. Malkin, A. Zelichenok, V. Krongauz, A. S. Dvornikov, and P. M. Rentzepis, Photochromism and kinetics of naphthacenequinones, J. Am. Chem. Soc. 116, 1101–1105 (1994).

    CAS  Google Scholar 

  51. R. Bär and G. Gauglitz, Limitations to the kinetic analysis of thermoreversible photoreactions of photochromic systems, J. Photochem. Photobiol. A 46, 15–26 (1989).

    Google Scholar 

  52. H. Dürr, Perspectives in photochromism: A novel system based on the 1,5-electrocyclization of heteroanalogous pentadienyl anions, Angew. Chem. Int. Ed. Engl. 28, 413–431 (1989).

    Article  Google Scholar 

  53. H. Dürr, Y. Ma, and G. Cortellaro, Preparation of photochromic molecules with polymerizable organic functionalities, Synthesis 1994, 294–298.

    Google Scholar 

  54. H. Dürr, Photochromism—from the molecular to the supramolecular system, Chimia 48, 514–515 (1994).

    Google Scholar 

  55. A. Samat, Spiropyranes benzothiazoliniques: étude de la substitution en position 3. Etudes structurales experimentales et theoriques de l’équilibrephotochromique, Thesis, Brest, France (1976).

    Google Scholar 

  56. A. Samat, J. Kister, F. Gamier, J. Metzger, and R. Guglielmetti, Spiropyranes benzothiazoliniques photochromes conduisant à des photomerocyanines hautement stabilisées thermiquement, Bull. Soc. Chim. Fr. 1975, 2627–2633.

    Google Scholar 

  57. V. Pimienta, D. Lavabre, G. Levy, A. Samat, R. Guglielmetti, and J. C. Micheau, Kinetic analysis of photochromic systems under continuous irradiation. Application to spiropyrans, J. Phys. Chem. 100, 4485–4490(1996).

    Article  CAS  Google Scholar 

  58. R. C. Bertelson, in Photochromism, (G. H. Brown, ed.). Chapter III, John Wiley & Sons, New York, (1971).

    Google Scholar 

  59. G. Baillet, G. Giusti and R. Guglielmetti, Comparative photodegradation study between spiro-[indoline-oxazine] and spiro[indoline-pyran] derivatives in solution, J. Photochem. Photobiol. A 70, 157–161 (1993).

    CAS  Google Scholar 

  60. C. Salemi-Delvaux, B. Luccioni-Houze, G. Baillet, G. Giusti, and R. Guglielmetti, Photooxygenation of αα′-dimethylstilbenes sensitized by photochromic compounds, Tetrahedron Lett 37, 5127–5130 (1996).

    Article  CAS  Google Scholar 

  61. G. Baillet, M. Campredon, R. Guglielmetti, G. Giusti, and C. Aubert, Dealkylation of N-substituted indolinospironaphthoxazine photochromic compounds under UV irradiation, J. Photochem. Photobiol. A 83, 147–151 (1994).

    CAS  Google Scholar 

  62. G. Baillet, V Lokshine, R. Guglielmetti, and G. Giusti, Photooxidation of the photochromic compound l,3,-trimethylspiro[indoline-naphthopyran] in the methanol, C.R. Acad. Sci. Paris, Ser. 2319, 41–46 (1994).

    Google Scholar 

  63. C. Salemi, G. Giusti, and R. Guglielmetti, DABCO effect on the photodegradation of photochromic compounds in spiro[indoline-pyran] and spiro[indoline-oxazine] series, J. Photochem. Photobiol. A 86, 247–252 (1995).

    CAS  Google Scholar 

  64. D. M. White and J. Sonnenberg, Oxidation of triarylimidazoles, Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals, J. Am. Chem. Soc. 88, 3825–3829 (1966).

    CAS  Google Scholar 

  65. K. Maeda and T. Hayashi, Photochromic color change of the dimer of triphenylimidazolyl at low temperature, Bull. Chem. Soc. Jpn 42, 3509–3514 (1969).

    CAS  Google Scholar 

  66. K. Maeda and T. Hayashi, The mechanism of photochromism, thermochromism and piezochromism of dimers of triarylimidazolyl, Bull. Chem. Soc. Jpn 43, 429–438 (1970).

    CAS  Google Scholar 

  67. G. P. Misra, D. Lavabre, and J. C. Micheau, Mechanistic investigations and spectrokinetic parameter determination during thermoreversible photochromism with degradation: Example of application to the triphenylimadazolyl dimer (TPID) system, J. Photochem. Photobiol A 80, 251–256 (1994).

    CAS  Google Scholar 

  68. J. Hennessy and A. C. Testa, Photochemistry of phenylimidazoles, J. Phys. Chem. 76, 3362–3365 (1972).

    Article  CAS  Google Scholar 

  69. B. Borderie, D. Lavabre, G. Levy, J. C. Micheau, and J. P. Laplante, The bistable TPID/CHCL 3 photoreaction: Numerical simulation and experimental results, Int. J. Chem. Kinet. 24, 309–317 (1992).

    Article  CAS  Google Scholar 

  70. T. Bercovici, R. Heiligman-Rim, and E. Fischer, Photochromism in spiropyrans, Part VI: Trimethylindolino-benzopyran and its derivatives, Mol. Photochem. 1, 23–55 (1969).

    CAS  Google Scholar 

  71. G. Lahmann, H. Lachmann, and H. Mauser, Kinetisch-spektroskopische analyse komplizierteree folgereaktionssysteme, Z. Phys. Chem. N. F. 120, 19–30 (1980).

    Google Scholar 

  72. H. D. Ilge, Bestimmung der UV/vis extinktionskoeffizienten und der partiellen quantenausbeuten eines vierkomponentensystems mit dem mechanismus M-L-N-O, Z Phys. Chem. 262, 385–401 (1981).

    CAS  Google Scholar 

  73. T. Tamaki and K. Ichimura, Photochromic chelating spironaphthoxazines, J. Chem. Soc.. Chem. Commun. 1989 1477–1478.

    Google Scholar 

  74. M. Sakuragi, A. Kousou, T. Tamaki, and K. Ichimura, The role of triplet state of nitrospiropyran in their photochromic reaction, Bull. Chem. Soc. Jpn. 63, 74–79 (1990).

    CAS  Google Scholar 

  75. K. Ulrich, H. Port, H. C. Wolf, J. Wonner, F. Effenberger, and H. D. Ilge, Photochromic thiopheneflugides; photokinetics of two isopropyl derivatives, Chem. Phys. 154, 311–322 (1991).

    Article  CAS  Google Scholar 

  76. H. Rau, Technical report, EPA Newsletter, No. 7, pp. 31–32 (1984).

    Google Scholar 

  77. H. Rau, G. Greiner, G. Gauglitz, and H. Meier, Photochemical quantum yields in the A-B system when only spectrum of A is known, J. Phys. Chem. 94, 6523–6524 (1990).

    Article  CAS  Google Scholar 

  78. F. Wilkinson, J. Hobley, and M. Naftaly, Photochromism of spiro-naphthoxazines: Molar absorption coefficients and quantum efficiencies, J. Chem. Soc., Faraday Trans. 88, 1511–1517 (1992).

    Article  CAS  Google Scholar 

  79. G. Gauglitz, P. Stöbel, H. Meier, and H. Rau, Photokinetic examination of (Z,E,E)-4,4′-distyrylazobenzene, J. Photochem. Photobiol. A 85, 207–211 (1995).

    CAS  Google Scholar 

  80. F. Grégoire, D. Lavabre, J. C. Micheau, M. Gimenez, and J. P. Laplante, Kinetics in a continuously stirred photochemical tank reactor, J. Photochem. 28, 261–271 (1985).

    Google Scholar 

  81. J. C. Micheau and D. Lavabre, Stirred flow reactor. A new approach to photochemical kinetics, EPA Newsletter, No. 3, pp. 26–33 (1986).

    Google Scholar 

  82. H. Rau and G. Greiner, Determination of quantum yields of the X/Y isomerization system from spectroscopic data, EPA Newsletter, No. 41, pp. 40–55 (1991).

    Google Scholar 

  83. G. Gauglitz and E. Scheerer, Method for the determination of absorption coefficients, reaction rate constants and thermodynamic data in the system A-B, J. Photochem. Photobiol. A 71, 205–212 (1993).

    CAS  Google Scholar 

  84. V. Pimienta, G. Levy, D. Lavabre, A. Samat, R. Guglielmetti, and J. C. Micheau, Computer analysis of the thermoreversible photochromism of spiropyrans compounds: Evaluation of absorption spectrum and quantum yields, Mol. Liq. Mol Cryst. 246, 283–286 (1994).

    CAS  Google Scholar 

  85. G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, Thermally reversible photoconversion of spiroindoline-naphthoxazines to photomerocyanines: A photochemical and kinetic study, J. Photochem. Photobiol. A 87, 235–241 (1995).

    CAS  Google Scholar 

  86. E. Fischer, The calculation of photostationnary states in systems A-B when only A is known, J. Phys. Chem. 71, 3704–3706 (1967).

    CAS  Google Scholar 

  87. J. Blanc and D. L. Ross, A procedure for determining the absorption spectra of mixed photochromic isomers not requiring their separation, J. Phys. Chem. 72, 2817–2824 (1968).

    Article  CAS  Google Scholar 

  88. G. M. Wyman and B. M. Zarnegar, Excited state chemistry of indigoid dyes I, J. Phys. Chem. 77, 831–837(1973).

    CAS  Google Scholar 

  89. G. M. Wyman, A new method for calculating the absorptionspectra of the components of photochromic systems A-B, Mol. Photochem. 6, 81–90 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deniel, M.H., Lavabre, D., Micheau, J.C. (2002). Photokinetics under Continuous Irradiation. In: Crano, J.C., Guglielmetti, R.J. (eds) Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46912-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46912-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45883-5

  • Online ISBN: 978-0-306-46912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics