Skip to main content

State of the Science Regarding in Vitro and in Vivo Exposure Systems for RF Studies

  • Chapter
  • 114 Accesses

Abstract

To understand the biological effects of radio frequency (RF) fields on humans, both in vitro and in vivo studies exposing cell cultures, isolated tissues, and animals have been conducted. Dosimetry of nonionizing radiation is far more complicated than that of ionizing radiation. Field frequency and polarization, tissue dielectric properties, object size and shape, and the presence of metallic stimulating and recording instruments can all affect energy absorption in exposed subjects, either in vitro or in vivo. In addition, temperature control in an exposure system can influence biological responses. Different exposure systems are reviewed in this paper. Relevance of the systems to wireless technology research is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, A R., & Adams, B. W. (1980). Microwaves modify thermoregulatory behavior in squirrel monkey. Bioelectromagnetics, 1, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Balzano, Q., Garay, O., & Manning, Jr., T. J. (1995). Electromagnetic energy exposure of simulated users of portable cellular telephones. IEEE Transactions on Vehicular Technology, 44, 390–403.

    Article  Google Scholar 

  • Bawin, S. M., Kaczmarek, L. K., & Adey, W. R. (1975). Effects of modulated VHF fields on the central nervous system. In P. E. Tyler (Ed.), Annals of the New York Academy of Sciences: Vol. 247. Biologic effects of nonionizing radiation (pp. 74–81). New York: New York Academy of Sciences.

    Google Scholar 

  • Blackman, C. F., Elder, J. A, Weil, C. M., Benane, S. G., Eichinger, D. C., & House, D. E. (1979). Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: Effects of modulation frequency and field strength. Radio Science, 14(6S), 93–98.

    Article  CAS  Google Scholar 

  • Bonasera, S., Toler, J. & Popovic, V. (1988). Long-term study of 435 MHz radiofrequency radiation on blood-borne end points in cannulated rats. Journal of Microwave Power, 23, 95–98.

    CAS  Google Scholar 

  • Brown, R. F., & Marshall, S. V. (1986). Differentiation of murine erythroleukemic cells during exposure to microwave radiation. Radiation Research, 108, 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Caddemi, A., Tamburello, C. C., Zanforlin, L., & Torregrossa, M. V. (1986). Microwave effects on isolated chick embryo hearts. Bioelectromagnetics, 7, 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, D. R., Levinson, D. M., Justesen, D. R., & Clarke, R. L. (1980). Failure of rats to escape from a potentially lethal microwave field. Bioelectromagnetics, 1, 101–115.

    Article  CAS  PubMed  Google Scholar 

  • Chan, K. W., Chou, C. K., McDougall, J. A., & Luk, K. H. (1988). Changes in heating patterns due to perturbations by thermometer probes at 915 and 434 MHz. International Journal of Hyperthermia, 4, 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., Bassen, H., Osepchuk, J., Balzano, Q., Petersen, R., Meltz, M., Cleveland, R., Lin, J. C. & Heynick, L. (1996). Radio frequency electromagnetic exposure: A tutorial review on experimental dosimetry. Bioelectromagnetics, 17, 195–208.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., & Guy, A. W. (1978). Effects of electromagnetic fields on isolated nerve and muscle preparations. IEEE Transactions on Mircowave Theory and Technique, 26, 141–147.

    Article  Google Scholar 

  • Chou, C. K., & Guy, A. W. (1982). Systems for exposing mice to 2450 MHz electromagnetic fields. Bioelectromagnetics, 3, 401–412.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., & Guy, A W. (1985). Research on non-ionizing radiation: Physical aspects in extrapolating infrahuman data to man. In J. C. Monahan & I. A. D’Andrea (Eds.), Behavioral effects of microwave radiation absorption (DHHS Publication No. 85–8238, pp. 135–149). Washington, DC: U.S. Department of Health and Human Services.

    Google Scholar 

  • Chou, C. K., Guy, A. W., Borneman, L. E., Kunz, L. L., & Kramar, P. (1983). Effects of chronic exposure of rabbits to 0.5 and 5 mW/cm2 2450 MHz CW microwave radiation. Bioelectromagnetics, 4, 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., Guy, A. W., & Galambos, R. (1982). Auditory perception of radio-frequency electromagnetic fields. Journal of Acoustic Society of America, 80th review and tutorial paper, 71, 1321–1334.

    Article  Google Scholar 

  • Chou, C. K., Guy, A. W., & Johnson, R. B. (1984). SAR in rats exposed in 2450-MHz circularly polarized waveguide. Bioelectromagnetics, 5, 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., Guy, A. W., Kunz, L. L., Johnson, R. B., Crowley, J., & Krupp, J. H. (1992). Long-term, low-level, microwave irradiation of rats. Bioelectromagnetics, 13, 469–496.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., Guy, A. W., McDougall, J. A, & Lai, H. (1985). Specific absorption rate in rats exposed to 2,450-MHz microwaves under seven exposure conditions. Bioelectromagnetics, 6, 73–88.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. K., McDougall, J. A., Chan, K. W., Vora, N., & Howard, H. (1993). Whole body hyperthermia with an RF electric field system. Proceedings 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Part 3, 1461–1462.

    Google Scholar 

  • Chou, C. K., See, W. A., Luk, K. H., & Chapman, W. H. (1987). Microwave hyperthermia system for treating bladder carcinoma in rats. Endocurietherapy and Hyperthermia Oncology, 3,147–152.

    Google Scholar 

  • Crawford, M. L. (1974). Generation of standard EM fields using TEM transmission cells. IEEE Transactions on Electromagnetic Compatibility, 16, 189–195.

    Article  Google Scholar 

  • Czerska, E. M., Elson, E. C., Davis, C. C., Swicord, M. L., & Czerski, P. (1992). Effects of continuous and pulsed 2450-MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro. Bioelectromagnetics, 13, 247–259.

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea, J. A., DeWitt, J.R., Gandhi, O. P., Stensaas, S., Lords, J. L., & Nielson H. C. (1986). Behavioral and physiological effects of chronic 2,450-MHz microwave irradiation of the rat at 0.5 mW/cm2. Bioelectromagnetics, 7, 45–56.

    Article  PubMed  Google Scholar 

  • Dardalhon, M., More, C., Averbeck, D., & Berteaud, A. J. (1984). Thermal action of 2.45-GHz microwaves on thecytoplasm of Chinesehamster cells. Bioelectromagnetics, 5, 247–261.

    Article  CAS  PubMed  Google Scholar 

  • Dhahi, S. J., Habash, W. Y., & Al-Hafid, H. T. (1982). Lack of mutagenic effects on conidia of aspergilluis amstelodami irradiated by 8.7175-GHz CW microwaves. Journal of Microwave Power, 17, 345–351.

    CAS  PubMed  Google Scholar 

  • Dimbylow, P. J., & Mann, S. M. (1994). SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Physics in Medicine and Biology, 39, 1537–1553.

    Article  CAS  PubMed  Google Scholar 

  • Durney, C. H., Johnson, C. C., Barber, P. W., Massoudi, H., Iskander, M. F., & Lords, J. L. (1978). Radiofrequency radiation dosimetry handbook (2nd ed.; Rep. SAR-TR-78-22). Brooks Air Force Base, TX: USAF School ofAerospace Medicine.

    Google Scholar 

  • Durney, C. H., Massoudi, H., & Iskander, M. F. (1986). Radiofrequency radiation dosimetry handbook (4th ed.; Rep. USARSAM-TR-85-73). Brooks Air Force Base, TX: USAF School ofAerospace Medicine.

    Google Scholar 

  • Dutta, S. K., Subramoniam, A., Ghosh, B., & Parshad, R. (1984). Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture. Bioelectromagnetics, 5, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Field, A. S., Ginsburg, K., & Lin, J. C. (1993). The effect of pulsed microwaves on passive electrical properties and interspike intervals of snail neurons. Bioelectromagnetics, 14, 503–520.

    Article  CAS  PubMed  Google Scholar 

  • Galvin, M. J., & McRee, D. I. (1986). Cardiovascular, hematologic and biochemical effects of acute ventral exposure of conscious rats to 2450-MHz (CW) microwave radiation. Bioelectromagnetics, 7, 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Galvin, M. J., Parks, D. L., & McRee, D. I. (1980). Microwave irradiation and in vitro release of enzymes from hepatic lysosomes. Radiation and Environmental Biophysics, 18, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, O. P. (1975). Discussion paper: Strong dependence of whole animal absorption on polarization and frequency of radio-frequency energy. In P. E. Tyler (Ed), Annals of the New York Academy of Sciences: Vol. 247. Biologic Effects of Nonionizing Radiation (pp. 532–538). New York: New York Academy of Sciences.

    Google Scholar 

  • Gandhi, O. P., Chen, J. Y., & Wu, D. (1994, September). Electromagnetic absorption in the human head for mobile telephones at 835 and 1900 MHz. Paper presented at the International Symposium on Electromagnetic Compatibility, Rome, Italy.

    Google Scholar 

  • Guy, A. W. (1977). A method for exposing cell cultures to electromagnetic fields under conditions of controlled temperature and field strength. Radio Science, 12(6S), 87–96.

    Article  Google Scholar 

  • Guy, A. W. (1979). Miniature anechoic chamber for chronic exposure of small animals to plane-wave microwave field. Journal of Microwave Power, 14, 328–338.

    Google Scholar 

  • Guy, A. W., & Chou, C. K. (1976). System for quantitative chronic exposure of a population of rodents to UHF fields. In C.C. Johnson & M.L. Shore (Eds.), Biological effects of electromagnetic waves: Selected Papers of the USNC/YRSU Annual Meeting, Boulder, Co. Vol. II (HEW Publication No. (FDA) 77–8011, pp. 389–410). Washington, DC: U.S. Department of Health, Education, and Welfare.

    Google Scholar 

  • Guy, A. W., & Chou, C. K.. (1982). Effects ofhigh-intensity microwave pulse exposure on rat brain. Radio Science, 17(5S), 169S–178S.

    Article  Google Scholar 

  • Guy, A. W., Chou, C. K., Lin, J. C., & Christensen, D. (1975). Microwave induced acoustic effects in mammalian auditory systems and physical materials. In P.E. Tyler (Ed.), Annals of the New York Academy of Sciences; Vol. 247. Biologic Effects of Nonionizing Radiation (pp. 194–218). New York: New York Academy of Sciences.

    Google Scholar 

  • Guy, A. W., & Korbel, S. F. (1972, May). Dosimetry studies on UHF cavity exposure chamber for rodents. Summaries of papers presented at the 1972 Power Symposium, Ottawa, Canada.

    Google Scholar 

  • Guy, A. W., Kramar, P. O., Harris, C. A., & Chou, C. K. (1980). Long term 2450 MHz CW microwave irradiation of rabbits: Methodology & evaluation of ocular and physiologic effects. Journal of Microwave Power, 15, 37–44.

    Google Scholar 

  • Guy, A. W., Wallace, J., & McDougall, J. A. (1979). Circularly polarized 2450-MHz waveguide system for chronic exposure of small animals to microwaves. Radio Science, 14, 63–74.

    Article  Google Scholar 

  • Guy, A. W., Webb, M. D., & Sorensen, C. C. (1976). Determination of power absorption in man exposed to high frequency electromagnetic fields by thermographic measurements on scale models. IEEE Transactions on Biomedical Engineering, 23, 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, G. H., McCulloch, D., Balcer-Kubiczek, E. K., & Robinson, J. E. (1985). Far-field 2.45 GHz irradiation system for cellular monolayers in vitro. Journal of Microwave Power, 20, 145–151.

    CAS  Google Scholar 

  • Johnson, C. C., & Guy, A. W. (1972). Nonionizing electromagnetic wave effects in biological materials and systems. Proceedings of the IEEE, 60, 692–718.

    Article  Google Scholar 

  • Joyner, K. H., Davis, C. C., Elson, E. C., Czerska, E. M., & Czerski, P. (1989). An automated dosimetry system for microwave and thermal exposure of biological samples in vitro. Health Physics, 56, 303–307.

    Article  CAS  PubMed  Google Scholar 

  • Justesen, D. R., Levinson, D. M., & Justesen, L. R. (1974). Psychogenic stressors are potent mediators of the thermal response to microwave irradiation. In Biological Effects and Health Harzards of Microwave Radiation (pp-134–140). Warsaw, Poland: Polish Medical Publisher.

    Google Scholar 

  • Korbel, S. F. (1970). Behavioral effects of tow intensity UHF radiation. In S.F. Cleary (Ed.), Symposium proceedings of biological effects and health implications of microwave radiation, BRH/DBE (pp. 180–184).

    Google Scholar 

  • Kramar, P. O., Emery, A. F., Guy, A. W., & Lin, J. C. (1975). The ocular effects of microwaves on hypothermic rabbits: A study of microwave cataractogenic mechanisms. In P. E. Tyler (Ed.), AnnalsoftheNewYork,Academy of Sciences: Vol. 247. Biologic EffectsofNonionizing Radiation (pp. 155–165). New York: New York Academy of Sciences.

    Google Scholar 

  • Kramar, P. O., Harris, C., Emery, A. F., & Guy, A. W. (1976). Acute microwave irradiation and cataract formation in rabbits and monkeys. Journal of Microwave Power, 13, 239–249.

    Google Scholar 

  • Kues, H. A., Hirst, L. W., Lutty, G. A., D’Anna, S. A., & Dunkelberger, G. R. (1985). Effects of GHz microwaves on primate comeal endothelium. Bioelectromagnetics, 6, 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Lenox, R. H., Gandhi, O. P., Meyerhoff, J. L., & Grove, H. M. (1976). A microwave applicator for in vivo rapid inactivation of enzymes in the central nervous system. IEEE Transactions on Microwave Theory and Technique, 24, 58–61.

    Article  Google Scholar 

  • Liburdy, R. P., & Magin, R. L. (1985). Microwave-stimulated drug release from liposomes. Radiation Research, 103,266–274.

    Article  CAS  PubMed  Google Scholar 

  • Liddle, C. G., Putnam, J. P., Ali, J. S., Lewis, J. Y., Bell, B., & West, M. W. (1980). Alteration of circulating antibody response of mice exposed to 9-GHz pulsed microwaves. Bioelectromagnetics, 1, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J. C. (1976). Anew system for investigating nonthennal effect of microwaves on cells. In C.C. Johnson & ML. Shore (Eds.), Biological effects of electromagnetic waves: Selected Papers of the USNC/YRSU Annual Meeting, Boulder, CO. Vol II. (HEW Publication No. (FDA) 77–8011, pp. 350–355). Washington, DC: U.S. Department of Health, Education, and Welfare.

    Google Scholar 

  • Liu, L.-M., & Cleary, S. F. (1988). Effects of 2.45-GHz microwave and 100-MHz radiofrequency radiation on liposome permeability at the phase transition temperature. Bioelectromagnetics, 9, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Lotz, W. G., & Saxton, J. L. (1987). Metabolic and vasomotor responses of rhesus monkeys exposed to 225-MHz radiofrequency energy. Bioelectromagnetics, 8, 73–89

    Article  CAS  PubMed  Google Scholar 

  • Marshall, S. V., & Brown, R. F. (1983). Experimental determination of whole body average specific absorption rate (SAR) of mice exposed to 200–400 MHz CW. Bioelectromagnetics, 4, 267–279.

    Article  CAS  PubMed  Google Scholar 

  • McRee, D. I., Hamrick, P. E. & Zinkl, J. (1975). Some effects of microwave of the Japanese quail embryo to 2.45-GHz microwave radiation. In P. E. Tyler (Ed.), Annals of the New York Academy of Sciences: Vol. 247. Biologic Effects of Nonionizing Radiation (pp. 378–390.) New York: New York Academy of Sciences.

    Google Scholar 

  • Meltz, M. L., Eagan, P., Harris, C. R., & Erwin, D. N. (1988). Dosimetry considerations in far field microwave exposure of mammalian cells. Physiological Chemistry and Physics and Medical NMR, 20, 23–30.

    CAS  PubMed  Google Scholar 

  • National Council on Radiation Protection and Measurements. (1981). Radiofrequency electromagnetic fields: Properties, quantities and units, biophysical interaction, and measurements (NCRP Rep. No. 67). Bethesda, MD: National Council on Radiation Protection and Measurements.

    Google Scholar 

  • Neilly, J. P. & Lin, J. C. (1986). Interaction of ethanol and microwaves on the blood-brain barrierofrats. Bioelectromagnetics, 7,405–414.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, R. G., de Lorge, J. O., Forstall, J. R., & Ezell, C. S. (1984). A circular waveguide irradiation system for nonhuman primates: Design and dosimetry. Bioelectromagnetics, 5, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Ray, S., & Behari, J. (1990). Physiological changes in rats after exposure to low levels of microwaves. Radiation Research, 123,199–202.

    Article  CAS  PubMed  Google Scholar 

  • Riley, V., Guy, A. W., Chou, C. K., Fitzmaurice, M. A., & Spackman, D. H. (1979, June). RF radiation effect on neoplastic cells (USAF/SAM Contract No. F33615-77-C-0617). Seattle, Washington: University of Washington School of Medicine, Department of Rehabilitation Medicine, Bioelectromagnetics Research Laboratory.

    Google Scholar 

  • Rupp, T., Montet, J., & Frazer, J. W. (1975). A comparison of thermal and radio-frequency exposure effects on trace metal content of blood plasma and liver cell fractions of rodents. In P. E. Tyler (Ed.), Annals of the New York Academy of Sciences: Vol. 247, Biologic Effects of Nonionizing Radiation (pp. 282–291). New York: New York Academy of Sciences.

    Google Scholar 

  • Sanders, A. P., & Joines, W. T. (1984). The effects of hypothermia and hypothermia plus microwaves on rat brain energy metabolism. Bioelectromagnetics, 5, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, J. L., & Mealing, G. A. R. (1993). Calcium-ion movement and contractility in atrial strips of frog heart are not affected by low-frequency-modulated, 1 GHz electromagnetic radiation. Bioelectromagnetics, 14, 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Stern, S., Margolin, L., Weiss, B., Lu, S. T., & Michaelson, S. M. (1979). Microwaves: Effect on thermoregulatory behavior in rats. Science, 206, 1198–1201.

    Article  CAS  PubMed  Google Scholar 

  • Sultan, M. F., Cain, C. A., & Tompkins, W. A. F. (1983). Immunological effects of amplitude-modulated radio frequency radiation: Blymphocyte capping. Bioelectromagnetics, 4, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, E. M., & Ashleman, B. T. (1975). Some effects of electromagnetic radiation on the brain and spinal cord of cats. In P. E. Tyler (Ed.), P.E. Annals of the New York Academy of Sciences: Vol. 247. Biologic Effects of Nonionizing Radiation (pp. 63–73). New York: New York Academy of Sciences

    Google Scholar 

  • Veyret, B., Bouthet, C., Deschaux, P., de Seze, R., Geffard, M., & Joussot-Dubien, J. (1991). Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation. Bioelectromagnetics, 12, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Wachtel, H., Seaman, R., & Joines, W. (1975). Effects of low-intensity microwaves on isolated neurons. In P. E. Tyler (Ed.), Annals of the New York Academy of Sciences: Vol. 247. Biologic Effects of Nonionizing Radiation pp. 46–62). New York: New York Academy of Sciences

    Google Scholar 

  • Weil, C. M, Spiegel, R. J., & Joines, W. T. (1984). Internal field strength measurements in chick forebrains at, 147, and 450 MHz. Bioelectromagnetics, 5, 293–304.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H. K., Cain, C. A., Lockwood, J., & Tompkins, W. A. F. (1983). Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity. Bioelectromagnetics, 4, 123–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chou, C.K. (2002). State of the Science Regarding in Vitro and in Vivo Exposure Systems for RF Studies. In: Carlo, G.L., Supley, M., Hersemann, S.E., Thibodeau, P. (eds) Wireless Phones and Health. Springer, Boston, MA. https://doi.org/10.1007/0-306-46899-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46899-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8347-5

  • Online ISBN: 978-0-306-46899-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics