Skip to main content

Abstract

Glycosylation can have significant effects on activity, pharmacokinetics, targeting, immunogenicity, and stability of a glycoprotein. Therefore, glycosylation engineering of animal cells which express cloned glycoprotein products is an enabling technology for generating molecular and functional diversity of these products. This review considers potential targets in modifying oligosaccharides on particular glycoprotein pharmaceuticals, strategies available to guide genetic design of a modified oligosaccharide biosynthesis pathway which will achieve the desired end-product, the current challenges and limitations, technologically and scientifically, in achieving industrially significant results, and progress being made to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J. E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.

    PubMed  CAS  Google Scholar 

  2. Stanley, P. 1992. Glycosylation engineering. Glycobiology 2: 99–107.

    PubMed  CAS  Google Scholar 

  3. Gumming, D. A. 1991. Glycosylation of recombinant protein therapeutics: control and functional implications. Glycobiology 1: 115–130.

    Google Scholar 

  4. Varki, A. 1993. Biological roles of oligosaccharides: all theories are correct. Glycobiology 3: 97–130.

    PubMed  CAS  Google Scholar 

  5. Rademacher, T. W., Parekh, R. B., Dwek, R. A. 1988. Glycobiology. Annu. Rev. Biochem. 57: 785–838.

    Article  PubMed  CAS  Google Scholar 

  6. Lis, H., Sharon, N. 1993. Protein glycosylation: Structural and functional aspects. Eur. J. Biochem. 218: 1–27.

    Article  PubMed  CAS  Google Scholar 

  7. Natsuka, S., Lowe, J. B. 1994. Enzymes involved in mammalian oligosaccharide biosynthesis. Curr. Opin. Struct. Biol. 4: 683–691.

    Article  CAS  Google Scholar 

  8. Goochee, C. F., Gramer, M. J., Andersen, D. C, Bahr, J. B. 1992. The oligosaccharides of glycoproteins: Factors affecting their synthesis and their influence on glycoprotein properties, p. In: P. Todd, S. K. Sikdar and M. Bier (ed.), Frontiers in Bioprocessing II. American Chemical Society, Washington, D.C.

    Google Scholar 

  9. Jenkins, N., Curling, M. A. 1994. Glycosylation of recombinant proteins: Problems and prospects. Enzyme Microb. Technol. 16: 354–364.

    Article  PubMed  CAS  Google Scholar 

  10. Wyss, D. F., Wagner, G. 1996. The structural role of sugars in glycoproteins. Current Opinion in Biotechnology 7: 409–416.

    Article  PubMed  CAS  Google Scholar 

  11. Jenkins, N., Parekh, R. B., James, D. C. 1996. Getting the glycosylation right: implications for the biotechnology industry. Nature Biotechnology 14: 975–981.

    Article  PubMed  CAS  Google Scholar 

  12. Dwek, R. A. 1995. Glycobiology: more functions for oligosaccharides. Science 269: 1234–1235.

    PubMed  CAS  Google Scholar 

  13. Koenig, A., Rakesh, J., Rakesh, V., Norgard-Sumnicht, K. E., Matta, K. L., Varki, A. 1997. Selectin inhibition: synthesis and evaluation of novel sialylated, sulphated and fucosylated oligosaccharides, including the major capping of GlyCAM-1. Glycobiology 7: 79–93.

    PubMed  CAS  Google Scholar 

  14. Graham, R. A., Burchell, J. M., Taylor-Papadimitriou, J. 1996. The polymorphic epithelial mucin: Potential as an immunogen for a cancer vaccine. Cancer Immun. Immunother. 42: 71–80.

    CAS  Google Scholar 

  15. Lloyd, K. O., Burchell, J., Kudryashov, V., Yin, B. W. T., Talor-Papadimitriou, J. 1996. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271: 33325–33334.

    Article  PubMed  CAS  Google Scholar 

  16. Malhotra, R., Wormald, M. R., Rudd, P. M., Fischer, P. B., Dwek, R. A., Sim, R. B. 1995. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Med. 1: 237–240.

    PubMed  CAS  Google Scholar 

  17. Misiaizu, T., Matsuki, S., Strickland, T. W., Takeuchi, M., Kobata, A., Takasaki, S. 1995. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86: 4097–4104.

    Google Scholar 

  18. Fürst, I. 1997. Amgen’s NESP heats up competiton in lucrative erythropoietin market. Nature Biotech. 15: 940.

    Google Scholar 

  19. Fu-Kuen, L. 1996. Production of erythropoietin. U.S. patent 5,547,933.

    Google Scholar 

  20. Davis, S.J., Puklavec, M.J., Ashford, D.A., Harlos, K., Jones, E.Y., Stuart, D.I., Williams, A.F. 1993. Expression of soluble recombinant glycoproteins with predefined glycosylation: applications to the crystallization of the T-cell glycoprotein CD2. Protein Eng. 6: 229–232.

    PubMed  CAS  Google Scholar 

  21. Nishikawa, A., Ihara, Y., Htakeyama, M., Kangawa, K., Taniguchi, N. 1992. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine:β-D-mannosideβ-1,4-N-acetylglucosaminyltransferase III from rat kidney. J. Biol. Chem. 267: 18199–18204.

    PubMed  CAS  Google Scholar 

  22. Lee, E. U., Roth, J., Paulson, J. C. 1989. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression ofβ-galactosideα2,6-sialyltransferase. J. Biol. Chem. 264: 13848–13855.

    PubMed  CAS  Google Scholar 

  23. Shao, M. C., Wold, F. 1995. The effect of the protein matrix proximity on glycan reactivity in a glycoprotein model. Eur. J. Biochem. 228: 79–85.

    Article  PubMed  CAS  Google Scholar 

  24. Do, K. Y., Fregien, N., Pierce, M., Cummings, R. D. 1994. Modification of glycoproteins by N-acetylglucosaminyltransferase V is greatly influenced by accessibility of the enzyme to oligosaccharide acceptors. J. Biol. Chem. 269: 23456–23464.

    PubMed  CAS  Google Scholar 

  25. Keyt, B. A., Paoni, N. F.. Refino, C. J., Berleau, L., Nguyen, H., Chow, A., Lai, J., Peña, L., Pater, C., Ogez, J., Etcheverry, T., Botstein, D., Bennett, W. F. 1994. A faster-acting and more potent form of issue plasminogen activator. Biochemistry 91: 3670–3674.

    CAS  Google Scholar 

  26. Shelikoff, M., Sinskey, A. J., Stephanopoulos, G. 1996. A modeling framework tor the study of protein glycosylation. Biotechnology and Bioengineering 50: 73–90.

    Article  CAS  Google Scholar 

  27. Kumar, V., Korza, G., Heinemann, F. S., Ozols, J. 1995. Human oligosaccharyltransferase: isolation, characterization, and the complete amino acid sequence of 50-kDa subunit. Arch-Biochem-Biophys. 320: 217–223.

    PubMed  CAS  Google Scholar 

  28. Schachter, H. 1986. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem. Cell Biol. 64: 163–181.

    PubMed  CAS  Google Scholar 

  29. Moremen, K. W., Trimble, R. B., Herscovics, A. 1994. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4: 113–125.

    PubMed  CAS  Google Scholar 

  30. Kumar, R., Yang, J., Larsen, R. D., Stanley, P. 1990. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc. Natl. Acad. Sci. USA 87: 9948–9952.

    PubMed  CAS  Google Scholar 

  31. Tan, J., D’Agostaro, A. F., Bendiak, B., Reck, F., Sarkar, M., Squire, J. A., Leong, P., Schachter, H. 1995. The human UDP-N-acetylglucosamine:alpha-6-D-mannoside-beta-l,2-N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q2l, expression in insect cells and purification of the recombinant protein. Eur. J. Biochem. 231: 317–328.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshiada, A., Minowa, M. T., Hara, T., Takamatsu, S., Oguri, S., Iguamatsu, A., Ikenaga, H., Takeuchi, M. 1997. Two novel isoforms of N-acetylglucosaminyltransferase IV. Glycoconjugate J. 14: S46.

    Google Scholar 

  33. Shoeribah, M., Perng, G. S., Adler, B., Weinstein, J., Basu, R., Cupples, R., Wen, D., Browne, J. K., P. Buckhaults, Fregien, N., Pierce, M. 1993. Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J. Biol. Chem. 268: 15381–15385.

    Google Scholar 

  34. Tsuji, S. 1996. Molecular cloning and functional analysis of sialyltransferases. J. Biochem. Tokyo 120: 1–13.

    PubMed  CAS  Google Scholar 

  35. Takeuchi, M., Kobata. A. 1991. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1: 337–346.

    PubMed  CAS  Google Scholar 

  36. Yan, S. B., Chao, Y. B., van Halbeek, H. 1993. Novel Asn-linked oligosaccharides terminating in GalNAcβ(,4)[Fucα(1,3)]GlcNAcβ(l,•) are present in recombinant human Protein C expressed in human kidney 293 cells. Glycobiology 3: 597–608.

    PubMed  CAS  Google Scholar 

  37. Demnan, J., Hayes, M., O’Day, C., Edumnds, T., Bartlett, C., Hirani, S., Ebert, K. M., Gordon, K., McPherson, J. M. 1991. Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and charaterization of the recombinant enzyme. Biotechnology N.Y. 9: 839–843.

    Google Scholar 

  38. James, D. C., Freedman, R. B., Hoare, M., Ogonah, O. W., Rooney, B. C., Larionov, O. A., Dobrovolsky, V. N., Lagutin, O. V., Jenkins, N. 1995. N-glycosylation of recombinant human interferon-γ produced in different animal expression systems. Bio/Technology 13: 592–596.

    Article  PubMed  CAS  Google Scholar 

  39. Sawada R, Lowe J B, Fukuda M. 1993. E-selectin-dependent adhesion efficiency of colonic carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-1 expression levels. J. Biol. Chem. 268: 12675–12681.

    PubMed  CAS  Google Scholar 

  40. Sako, D., Chang, X. J., Barone, K. M. et al. 1993. Expression cloning of functional glycoprotein ligand for P-selectin. Cell 75: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  41. Bierhuizen, M. F. A., Maemura, K., Fukuda, M. 1994. Expression of a differentiation antigen and poly-N-acetyllactosaminyl O-glycans directed by a cloned core 2β-1,6-N-acetylglucosarninyltransferase. J. Biol. Chem. 269: 4473–4479.

    PubMed  CAS  Google Scholar 

  42. Grabenhorst, E., Hoffmann, A., Nimtz, M. et al. 1995. Construction of a stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(-l-4)GlcNAc 2,6-sialyltransferase.-2,6 Linked NeuAc is preferentially attached to the Gal(-l-4)GlcNAc(-l-2)Man(-l-3)-branch of diantennary oligosaccharides from secreted recombinant-trace glycoprotein. Eur. J. Biochem. 232: 718–725.

    Article  PubMed  CAS  Google Scholar 

  43. Minch, S. L., Kallio, P. T., Bailey, J. E. 1995. Tissue plasminogen activator coexpressed in Chinese hamster ovary cells withα(2,6)-sialyltransferase contains NeuAcα(2,6)Galβ(1,4)Glc-N-AcR linkages. Biotechnol. Prog. 11: 348–351.

    Article  PubMed  CAS  Google Scholar 

  44. Li, F., Wilkins, P. P., Crawley, S., Weinstein, J. et al. 1996. Post-translational modifications of recombinant P-selectin glycoprotein ligand-l required for binding to P-selectin and E-selectin. J. Biol. Chem. 271: 3255–3264.

    PubMed  CAS  Google Scholar 

  45. Wagner, R., Liedtke, S., Kretzschmar, E. et al. 1996. Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of humanβ1,2-N-acetylglucosaminyltransferase I. Glycobiology 6: 165–175.

    PubMed  CAS  Google Scholar 

  46. Grabenhorst, E., Costa, J., Conradt, H. S. 1997. Construction of novel BHK-21 cell lines coexpressing Golgi resident or soluble forms of humanα2,6-sialyltransferase andα1,3/4-fucosyltransferases together with secretory glycoproteins. In: Carrondo M.J.T., Griffits B Moreira J.L.P., eds. Animal Cell Technology: Kluwer Academic Publishers., The Netherlands: 481–487.

    Google Scholar 

  47. Youakim, A., Shur, B. D. 1993. Effects of overexpression of beta-1,4-galactosyltransferase on glycoprotein biosynthesis in F9 embryonal carcinoma cells. Glycobiology 3: 155–163.

    PubMed  CAS  Google Scholar 

  48. Prieto, P. A., Mukerji. P., Kelder, B., Erney, R., Gonzalez, D., Yun, J. S., Smith, D. F., Moremen, K. W., Nardelli, C., Pierce, M., Li, Y., Chen, X., Wagner, T. E., Cummings, R. D., Kopchick, J. J. 1995. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J. Biol. Chem. 270: 29515–29519.

    PubMed  CAS  Google Scholar 

  49. Bailey, J. E., Umaña, P., Minch, S., Harrington, M., Page, M., Sburlati, A. 1997. Metabolic engineering of N-linked glycoform symthesis systems in Chinese hamster ovary (CHO) cells, in M.J.T. Carrondo, B. Griffiths and J.L.P. Moreira (eds.), Animal Cell Tecnology, Kluwer academic publishers, Dordrecht, pp. 489–494.

    Google Scholar 

  50. Minch, S. L. 1996. Engineering of Protein Glycosylation in Chinese Hamster Ovary Cells: Genetic Manipulations, Global Glycoprotein Analysis, and Studies of Environmental Influences. Ph. D. Thesis, California Institute of Technology, Pasadena, California.

    Google Scholar 

  51. Livingston, B. D., De Robertis, E. M., Paulson, J. C. 1990. Expression ofβ-galactosideα-2,6-sialyltransferase blocks synthesis of polysialic acid in Xenopus embryos. Glycobiology 1: 39–44

    PubMed  CAS  Google Scholar 

  52. Umaña, P., Bailey, J. E. 1997. A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55: 890–908.

    Article  Google Scholar 

  53. Nilsson, T., Rabouille, C., Hui, N., Watson, R., Warren, G. 1996. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J. Cell Biol. 109: 1975–1989.

    CAS  Google Scholar 

  54. Russo, R. N., Shaper, N. L., Taatjes, D. J., Shaper, J. H. 1992. Beta-l,4-Galactosyltransferase: A short NH-2-terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. Journal Of Biological Chemistry 267: 9241–9247.

    PubMed  CAS  Google Scholar 

  55. Fusseneger, M., Mazur, X., Bailey, J. E. 1997. A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol and Bioeng. 55: 927–939.

    Google Scholar 

  56. McQueen, A., Bailey, J. E. 1990. Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production. Biotechnol. Bioeng. 35: 1067–1077.

    CAS  Google Scholar 

  57. McQueen, A., Bailey, J. E. 1990. Mathematical modelling of the effects of ammonium ion on the intracellular pH of hybridoma cells. Biotechnol. Bioeng. 35: 897–906.

    Google Scholar 

  58. McQueen, A., Bailey, J. E. 1991. Growth inhibition of hybridoma cells by ammonium ion: correlation with effects on intracellular pH. Bioprocess Eng. 6: 49–61.

    Google Scholar 

  59. Andersen, D. C, Goochee, C. F. 1995. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol. Bioeng. 13: 98–105.

    Google Scholar 

  60. Hayter, P. M., Curling, E. M., Baines, A. J., Jenkins, N., Salmon, I., Strange, P. G., Tong, J. M., Bull, A. T. 1992. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant interferon-g. Biotechnol. Bioeng. 39: 327.

    Article  CAS  Google Scholar 

  61. Tachinaba, H., Taniguchi, K., Ushio, Y. et al. 1994 Changes of monosaccharide availability of human hybridoma lead to alteration of biological properties of human monoclonal antibodies. Cytotechnology 16: 151–157.

    Google Scholar 

  62. Maiorella, B. L., Winkelhake, J., Young, J., Moyer, B., Bauer, R., Hora, M., Andya, J., Thomson, J., Patel, T., Parekh, R. 1993. Effect of culture conditons on IgM antibody structure, pharmacokinetics and activity. Bio/Technology 11: 387–392.

    Article  PubMed  CAS  Google Scholar 

  63. Pels Rijcken, W. R., Overdijk, B., Van den Eijnden, D. H., et al. 1995. The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870.

    PubMed  CAS  Google Scholar 

  64. Borys M C, Linzer D H, Papoutsakis E T. 1993. Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Bio/Technology 11: 720–724.

    Article  PubMed  CAS  Google Scholar 

  65. Hooker, A. D., Goldman, M. H., Markham, N. H., James, D. C., Ison, A. P., Bull, A. T., Strange, P. G., Salmon, I., Baines, A. J., Jenkins, N. 1995. N-glycans of recombinant human interferon-γ change during batch culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 48: 639–648.

    Article  CAS  Google Scholar 

  66. Gramer, M. J., Goochee, C. F., Chock, V. Y., Brousseau, D. T., Sliwkowski, M. B. 1995. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13: 692–698.

    Article  PubMed  CAS  Google Scholar 

  67. Licari, P. J., Jarvis, D. L., Bailey, J. E. 1993. Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotechnol. Prog. 9: 147–152.

    Article  Google Scholar 

  68. Ferrari, J., Gunson, J., Lofgren, J., Nayak, N., Krumment, L., Sliwkowski, M., Warner, T. G. 1997. Constitutively expressed sialidase antisense RNA results in increased sialic acid on recombinant glycoprotein expressed in Chinese hamster ovary cells. Glycoconjugate J. 14: S119.

    Google Scholar 

  69. Merkle, R. K., Cummings, R. D. 1987. Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138: 232–259.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Otto-Wilhelm Merten Pierre Perrin Bryan Griffiths

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bailey, J.E., Prati, E., Jean-Mairet, J., Sburlati, A., Umaña, P. (1998). Engineering Glycosylation in Animal Cells. In: Merten, OW., Perrin, P., Griffiths, B. (eds) New Developments and New Applications in Animal Cell Technology. Springer, Dordrecht. https://doi.org/10.1007/0-306-46860-3_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46860-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5016-3

  • Online ISBN: 978-0-306-46860-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics