Skip to main content

Introduction to the Cyanobacteria

  • Chapter

Summary

This chapter is written largely for those who are not already specialists in the cyanobacteria. Features of these organisms are introduced by highlighting some of the topics described in the various chapters, together with other important subjects for which there was no space for a dedicated chapter. The reason is explained why cyanobacteria were formerly known as blue-green algae, and frequently still are known under this name by those involved in water management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belay A, Ota Y, Miyakawa K and Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol5:235–241.

    Google Scholar 

  • Binder BJ and Chisholm SW (1990) Relationship between DNA cycle and growth rate in Synechococcus sp. strain 6301. J Bacteriol 172:2313–2319.

    CAS  PubMed  Google Scholar 

  • Biniszkiewicz D, Cesnaviciene E and Shub DA(1994) Self-splicing group I intron in cyanobacterial initiator methionine tRNA evidence for lateral transfer of introns in bacteria. EMBO J 13:4629–4635.

    CAS  PubMed  Google Scholar 

  • Bryant DA (ed.) (1994) The Molecular Biology of Cyanoacteria. 881 pp. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Campbell EL, Brahamsha B, Meeks JC (1998) Mutation of an alternative sigma factor inthe cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner, Anthoceros punctatus. J Bacteriol 180:4938–4941.

    CAS  PubMed  Google Scholar 

  • Carr NG (1999) Freiburg to Vienna — looking at cyanobacteria over the twenty-five years. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes. Proceedings of the Ninth International Symposium held in Vienna, Austria, September 6–12, 1997. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Castenholz RW (1978) The biogeogrpahy of hot spring algae through enrichment cultures. Mitt Int Verh Limnol 21:296–315.

    Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28:737–745.

    Article  Google Scholar 

  • Castenholz RW and Waterbury JB (1989) Group 1. Cyanobacteria. Preface. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology. Volume 3:1710–1727.

    Google Scholar 

  • Cohen YJ, Padan E and Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–863.

    CAS  PubMed  Google Scholar 

  • Demoulin V and Janssen MP (1981) Relationship between diameter of the filament and cell shape in blue-green algae. Br PhycolJ 16:55–58.

    Google Scholar 

  • Desikachary TV(1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Drapeau C and Gutermuth FB (1998) Turning nuisance algae into health food. 4th International Conference on Toxic Cyanobacteria, 27 September–1 October 1998, Beaufort, North Carolina. Compilation of Abstracts, p. 89.

    Google Scholar 

  • Drouet F and Daily WA (1956) Revision of the coccoid Myxophyceae. Butler Univ Stud 10: 1–218.

    Google Scholar 

  • Fogg GE (1944) Growth and heterocyst production in Anabaena cylindrica Lemm. New Phytologist 43: 164–175.

    Google Scholar 

  • Frémy P (1929–1933) Cyanophycées des Côtes ďEurope. Mtm Soc Natn Sci Nat Math, Cherbourg 41: 1–236.

    Google Scholar 

  • Frtmy P (1929) Les Myxophycées de ĮAfrique Equatoriale Française. Archives de Botanique III, Mtmoire No. 2, 508 pp. (reprintedprivately, Caen, 1930)

    Google Scholar 

  • Garcia-Pichel F, Prufert-Beboutand Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62: 3284–3291.

    CAS  PubMed  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-Flora, Volume 14. Akademische Verlagsgesellschaft. Leipzig.

    Google Scholar 

  • Herdman M, Janvier M, Rippka R and Stanier RY (1979) Genome size ofcyanobacteria. J Gen Microbiol 111: 73–85.

    Google Scholar 

  • Herdman M and Rippka R (1988) Hormogonia and baeocytes. Methods in Enzymology 167: 232–242.

    Google Scholar 

  • Hiroki M, Shimizu A, Li R, Watanabe M and Watanabe MM (1998) PhycologicalResearch 46, Suppl: 85–93.

    Google Scholar 

  • Hyenstrand P, Blomqvist P and Pettersson A (1998) Factors determining cyanobacterial success inaquatic systems-a literature review. Arch Hydrobiol Spec Issues Advanc Limnol 51: 41–62.

    Google Scholar 

  • Johnson PW and Siebucth JMcN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24: 928–935.

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu, E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S(1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803.II. Sequence determination of the entire genome and assignment ofpotential protein-coding regions. DNA Res 3: 109–136.

    CAS  PubMed  Google Scholar 

  • Kann E (1972) Zur Systematik und Ökologie der Gattung Charmesiphon (Cyanophyceae) 1. Systematik; 2. Ökologie. Arch Hydrobiol (Suppl) 41: 117–11;243–282.

    Google Scholar 

  • Kann E and Komárek J(1970) Systematisch-Ökologische Bemerkungen zu den Arten Formenkreis Phormidium autumnale. Schweiz Z Hydrol 32: 495–518.

    Google Scholar 

  • Komárek J and Anagnostidis K (1988) Modern approach to the classification system of cyanophytes. Arch Hydrobiol 73: 157–226.

    Google Scholar 

  • Komárek J and Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4 — Nostocales. Arch Hydrobiol 82: 247–345.

    Google Scholar 

  • Komárek J and Anagnostidis K (1999) Cyanoprokaryota. 1. Teil Chroococcales. Süßwasserflora von Mitteleuropa. Gustav Fischer: 548 pp.

    Google Scholar 

  • Kondo T and Ishiura M (1999) The circadian clocks of plants and cyanobacteria. Trends in Plant Science 4(5):171–176

    Article  PubMed  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Hirschie Johnson C, Kutsuna S and Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266: 1233–1236.

    CAS  PubMed  Google Scholar 

  • Kratz WA and Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42 275–280.

    Google Scholar 

  • Lepp PW and Schmidt TM (1998) Nucleic acid content of Synechococcus spp. during growth in continuous light and light/dark cycles. Arch Microbiol 170: 201–207

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1753) Species Plantarum, Exhibentes Plantas Rite Cognitas,et Genera Relatas, cum Differentus Specificis,. Nominibus Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum System a SexualeDigestas II. Stockholm.

    Google Scholar 

  • Mann NH and Carr NG(1974) Control of macromolecular composition and cell division in the blue-green alga, Anacystis nidulans. J Gen Microbio l83: 399–405.

    Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixingcyanobacteria and plants — The establishment of symbiosis causes dramatic morphological and physiologicalchanges in the cyanobacterium. Bioscience 48: 266–276.

    Google Scholar 

  • Neilan BA, Dittmann E, Rouhiaien L, Amanda Bass R, Schaub V, Sivonen K and Borner T (1999) Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181: 4089–4097.

    CAS  PubMed  Google Scholar 

  • Nienow JA and Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed.) Antarctic Microbiology, pp 353–412. Wiley-Liss, New York.

    Google Scholar 

  • Padan E and Cohen Y (1982) Anoxygenic photosynthesis. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria. Blackwell, Oxford, and University of California Press, Berkeley: 215–235.

    Google Scholar 

  • Paquin B., S.D. Kathe, S.A. Nierzwicki-Bauer, and Shub DA (1997) Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bacteriol 179:6798–6806.

    CAS  PubMed  Google Scholar 

  • Paulsrud P and Lindblad P (1998) Sequence variation of the tRNALEU intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ. Microbiol 64: 310–315.

    CAS  PubMed  Google Scholar 

  • Post AF (1999) The prochlorophytes — an algal enigma. Biology of chlorophyll a/b containing photosynthetic prokaryotes. In: Seckbach J (ed.) Enigmatic Microorganisms and Life in Extreme Environments, 115–125. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Rasmussen U and Svenning MV (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol. 64:265–272.

    CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles JB, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties ofpurecultures ofcyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Rudi K, Skulberg OM and Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyleticallyrelatedstrains. J Bacteriol 180:3453–3461.

    CAS  PubMed  Google Scholar 

  • Rudi K, Skulberg OM, Larsen F and Jakobsen KS (1997) Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Appl Environ Microbiol 63:2593–2599.

    CAS  PubMed  Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Muhling M, Whitton BA, Belay A and Wilmotte A (1999) Arthrospira (’spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed space. FEMS Microbiol Lett 172: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW and Walter MR (1982) Origin and early evolution of cyanobacteria: The geological evidence. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 543–564, Blackwell, Oxford, and University of California Press, Berkeley.

    Google Scholar 

  • Simon RD (1980) DNA content of heterocysts and spores of the filamentous cyanobacterium Anabaena variabilis. FEMS Microbiol.Lett. 8:241–245.

    Article  CAS  Google Scholar 

  • Sivonen K and Jones G (1999) Cyanobacterial toxins. In: Chorus I and Bartram J (eds) Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management. 41–111. E & FNSpon, London & New York.

    Google Scholar 

  • Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Determinative Bacteriology, Volume 3. Williams and Wilkins, Baltimore:2298+ 18pp.

    Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EMN, Eimhjellen KE, Whittenbury R, Gherna RL and Trüper HG (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336.

    Google Scholar 

  • Steinberg CEW, Schafer H, Beisker W and Bruggemann R (1998) Deriving restoration goals for acidified lakes from ataxonomic phytoplanktonstudies. Restoration Ecology 6:327–335.

    Article  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557.

    Article  CAS  PubMed  Google Scholar 

  • Tandeau de Marsac N (1994) Differentiation of hormogonia and relationships with other biological processes. In: Bryant DA (ed.) The Molecular Biology of Cyanobacteria, pp 825–842. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Tillett D, Dittmann E, Borner T and Neilan BA (1998) Structural analysis of the Microcystis genome associated with microcystin biosynthesis. In: Carmichael WW and Paerl HW (eds) (1998) Abstracts, 4th International Conference on Toxic Cyanobacteria, Beaufort, NorthCarolina:49.

    Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL and Brand LE (1979) Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature 277:293–294.

    Article  Google Scholar 

  • Whitton BA (1991) Diversity, ecology, and taxonomy of the cyanobacteria. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 1–51. Plenum, New York.

    Google Scholar 

  • Whitton BA and Carr NG (1982) Cyanobacteria: current perspectives. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 1–8. Blackwell, Oxford, and University of California Press, Berkeley.

    Google Scholar 

  • Whitton BA, Robinson PJ and Gemmell JJ (2000) Key to Blue-green Algae of the British Isles. Environment Agency (England and Wales) and University ofDurham. Department of Biological Sciences, University of Durham, Durham, UK

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed.) The Molecular Biology of Cyanobacteria, pp 1–25. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Wilmotte A, Stam W and Demoulin V (1997) Taxonomic study of marine oscillatoriacean strains (Cyanophyceae, Cyanobacteria) with narrow trichomes. III. DNA-DNA hybridization studies and taxonomic conclusions. Algol Stud 87: 11–28.

    Google Scholar 

  • Wolk CP, Ernst A and Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed.) The Molecular Biology of Cyanobacteria, pp 769–823. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Yoon HS and Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282: 935–938.

    Article  CAS  PubMed  Google Scholar 

  • Zarrouk C (1966) Contribution à I’étude ľune cyanophycée. Influence dedivers facteurs physiques etchimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitl. Ph.D. Thesis, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Whitton, B.A., Potts, M. (2000). Introduction to the Cyanobacteria. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics