Skip to main content

Degradation of Cellulose and Starch by Anaerobic Bacteria

  • Chapter
Glycomicrobiology

Summary

Cellulolytic and amylolytic systems of some anaerobic bacteria are now known to be far more complex than simply the production of extracellular enzymes. These systems include the interaction of many components to effectively hydrolyze the polysaccharides. The constituents of these systems appear to form some type of complex: membrane associated for some gram-negative amylolytics and exocellular cellulosomes for some gram-positive cellulolytics.

These complexes house polysaccharide binding proteins, which apparently serve to bring the polysaccharide into proximity to the polysaccharidases. For some bacteria, binding to the starch molecule appears to be an essential step for starch utilization. It is less certain if binding to cellulose molecules is an essential step for cellulolytic bacteria.

In general, both cellulolytic and amylolytic bacterial activity is induced by cultivation in medium containing some form of the respective polysaccharide. However, the overall regulation of the synthesis and aggregation of the cell surface complexes is still uncertain. In addition, while there is evidence that some bacteria repress their polysaccharide utilization systems in preference of utilizing more soluble carbohydrates, such as glucose, it is not certain how universal such repression is in the anaerobic bacterial world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait, N., Creuzet, N., and Forget, P., 1979, Partial purification of cellulases from Clostridium thermocellum, J. Gen. Microbiol. 113:399–402.

    CAS  Google Scholar 

  • Akin, D. E., 1976, Ultrastructure of rumen bacterial attachment to forage cell walls, Appl. Env. Microbiol. 31:562–568.

    CAS  Google Scholar 

  • Alexander, M., 1977, Introduction to Soil Microbiology, 2nd Ed., John Wiley and Sons, New York.

    Google Scholar 

  • Anderson, K. L., 1995, Biochemical analysis of starch degradation by Ruminobacter amylophilus 70, Appl. Env. Microbiol. 61:1488–1491.

    CAS  Google Scholar 

  • Anderson, K. L., 1998, Cationized ferritin as a stain for electron microscopic observation of bacterial ultrastructure, Biotech. Histochem. 73:278–288.

    PubMed  CAS  Google Scholar 

  • Anderson, K. L., and Salyers, A. A., 1989a, Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes, J. Bacteriol. 171:3192–3198.

    PubMed  CAS  Google Scholar 

  • Anderson, K. L., and Salyers, A. A., 1989b, Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron, J. Bacteriol. 171:3199–3204.

    PubMed  CAS  Google Scholar 

  • Anderson, K. L., Megehee, J. A., and Varel, V. H., 1998, Conjugal transfer of transposon Tn1545 into the cellulolytic bacterium Eubacterium cellulosolvens, Lett. Appl. Microbiol. 26:35–37.

    Article  PubMed  CAS  Google Scholar 

  • Annous, B. A., and Blaschek, H. P., 1990, Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824, Appl. Env. Microbiol. 56:2559–2561.

    CAS  Google Scholar 

  • Baker, F., and Nasr, H., 1947, Microscopy in the investigation of starch and cellulose breakdown in the digestive tract, J. Res. Microsc. Soc. 67:27–42.

    Google Scholar 

  • Barr, B. K., Hsieh, Y.-L., Ganem, B., and Wilson, D. B., 1996, Identification of two functionally different classes of exocellulases, Biochemistry 35:586–592.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., and Lamed, R., 1986, Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose, J. Bacteriol. 167:828–836.

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., and Lamed, R., 1992, The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3:171–188.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, E. A., Kenig, R., and Lamed, R., 1983, Adherence of Clostridium thermocellum to cellulose, J. Bacteriol. 156:818–827.

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., Morag, E., Shoham, Y., Tormo, J., and Lamed, R., 1996, The cellulosome: A cell surface organelle for the adhesion to and degradation of cellulose, in: Bacterial Adhesion: Molecular and Ecological Diversity (M. Fletcher, ed.), Wiley-Liss, New York, pp. 155–182.

    Google Scholar 

  • Beattie, L., Bhat, K. M., and Wood, T. M., 1994, The effect of cations on reassociation of the components of the cellulosome cellulase complex synthesized by the bacterium Clostridium thermocellum, Appl. Microbiol. Biotechnol. 40:740–744.

    Article  CAS  Google Scholar 

  • Béguin, P., 1990, Molecular biology of cellulose degradation, Annu. Rev. Microbiol. 44:219–248.

    PubMed  Google Scholar 

  • Béguin, P., and Aubert, J.-P, 1994, The biological degradation of cellulose, FEMS Microbiol. Rev. 13:25–58.

    Article  PubMed  Google Scholar 

  • Béguin, P., and Lemaire, M., 1996, The cellulosome: An exocellular multiprotein complex specialized in cellulose degradation, Crit. Rev. Biochem. Mol. Biol. 31:201–236.

    PubMed  Google Scholar 

  • Bhat, S., Goodenough, P. W., Owen, E., and Bhat, M. K., 1993, Cellobiose: A true inducer of cellulosome in different strains of Clostridium thermocellum, FEMS Microbiol. Lett. 111:73–78.

    Article  CAS  Google Scholar 

  • Blair, B. G., and Anderson, K. L., 1998, Comparison of staining techniques for scanning electron microscopic detection of ultrastructural protuberances on cellulolytic bacteria, Biotech. Histochem. 73:107–113.

    Article  PubMed  CAS  Google Scholar 

  • Blair, B. G., and Anderson, K. L., 1999, Regulation of cellulose-inducible structures of Clostridium cellulovorans, Can. J. Microbiol. 45:242–249.

    Article  PubMed  CAS  Google Scholar 

  • Bolobova, A. V., Zhukov, A. V., and Klosov, A. A., 1994, Lipids and fatty acids in cellulosomes of Clostridium thermocellum, Appl. Microbiol. Biotechnol. 42:128–133.

    Article  CAS  Google Scholar 

  • Brenner, R., Maccubbin, E. A., and Hodson, R. E., 1984, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora, Appl. Env. Microbiol. 47:998–1004.

    Google Scholar 

  • Calza, R. E., Irwin, D. A., and Wilson, D. B., 1985, Purification and characterization of two beta-l,4-endoglucanases from Thermomonospora fusca, Biochemistry 24:7797–7804.

    Article  CAS  Google Scholar 

  • Cavedon, K., Leschine, S. B., and Canale-Parola, E., 1990, Cellulase system of a freeliving, mesophilic clostridium (strain C7), J. Bacteriol. 172:4222–4230.

    PubMed  CAS  Google Scholar 

  • Choi, S. K., and Ljungdahl, L. G., 1996a, Dissociation of the cellulosome of Clostridium thermocellum in the presence of ethylenediaminetetraacetic acid occurs with the formation of truncated polypeptides, Biochemistry 35:4897–4905.

    PubMed  CAS  Google Scholar 

  • Choi, S. K., and Ljungdahl, L. G., 1996b, Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum, Biochemistry 35:4906–4910.

    PubMed  CAS  Google Scholar 

  • Cirucla, A., Gilbert, H. J., Ali, B. R. S., and Hazlewood, G. P., 1998, Synergistic interaction of the cellulosome integrating protein (CipA) from Clostridium thermocellum with a cellulosomal endoglucanase, FEBS Lett. 422:221–224.

    Google Scholar 

  • Cocconcelli, P. S., Ferrari, E., Rossi, F., and Bottazzi, V., 1992, Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation, FEMS Microbiol. Lett. 94:203–208.

    Article  CAS  Google Scholar 

  • Colberg, P. J., and Young, L. Y., 1982, Biodegradation of lignin-derived molecules under anaerobic conditions, Can. J. Microbiol. 28:886–889.

    Article  CAS  Google Scholar 

  • Colberg, P. J., and Young, L. Y., 1985, Anaerobic degradation of soluble fractions of [14C-Lignin] lignocellulose, Appl. Env. Microbiol. 49:345–349.

    CAS  Google Scholar 

  • Cotta, M. A., 1988, Amylolytic activity of selected species of ruminal bacteria, Appl. Env. Microbiol. 54:772–776.

    CAS  Google Scholar 

  • Cotta, M. A., and Whitehead, T. R., 1993, Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis, Appl. Env. Microbiol. 59:189–196.

    CAS  Google Scholar 

  • Cotta, M. A., Wheeler, M. B., and Whitehead, T. R., 1994, Cyclic AMP in ruminal and other anaerobic bacteria, FEMS Microbiol. Lett. 124:355–360.

    Article  PubMed  CAS  Google Scholar 

  • Coughlan, M. P., 1992, Enzymic hydrolysis of cellulose: an overview, Bioresource Technol. 39:107–115.

    Article  CAS  Google Scholar 

  • Coughlan, M. P., and Ljungdahl, L. G., 1988, Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems, in: Biochemistry and Genetics of Cellulose Degradation (J. Aubert, P. Béguin, and J. Millet, eds.), Academic Press, New York, pp. 11–30.

    Google Scholar 

  • Davies, G., and Henrissat, B., 1995, Structures and mechanisms of glycosyl hydrolases, Structure 3:853–859.

    Article  PubMed  CAS  Google Scholar 

  • D’elia, J. N., and Salyers, A. A., 1996, Contribution of a neopullulanase, pullulanase, and an α-glucosidase to growth of Bacteroides thetaiotaomicron on starch, J. Bacteriol. 178:7173–7179.

    Google Scholar 

  • Doyle, R. J., 1994, Introduction to lectins and their interactions with microorganisms, in: Lectin-Microorganism Interactions (R. J. Doyle and M. Slifkin, eds.), Marcel Dekker, New York, pp. 1–65.

    Google Scholar 

  • El-Shazly, K., Dehority, B. A., and Johnson, R. R., 1961, Effect of starch on the digestion of cellulose in vitro and in vivo by rumen microorganisms, J. Anim. Sci. 20:268–271.

    Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1987, Resistant starch, a “new” food component: A classification of starch for nutritional purposes, in: Cereals in a European Context (I. D. Morton, ed.), Ellis Horwood, Chichester, England, pp. 221–223.

    Google Scholar 

  • Fenchel, T. M., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.

    CAS  Google Scholar 

  • Fields, M. W., Ryals, P. E., and Anderson, K. L., 1997, Polysaccharide inducible outer membrane proteins of Bacteroides xylanolyticus X5-1, Anaerobe 3:43–48.

    Article  CAS  PubMed  Google Scholar 

  • Fujino, T., Béguin, P., and Aubert, J.-P, 1993, Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface, J. Bacteriol. 175:1891–1899.

    PubMed  CAS  Google Scholar 

  • Fusee, M. C., and Leatherwood, J. M., 1972, Regulation of cellulase from Ruminococcus, Can. J. Microbiol. 18:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Gal, L., Pagès, S., Gaudin, C., Bélaïch, A., Reverbel-Leroy, C., Tardif, C., and Bélaïch, J.-P., 1997, Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum, Appl. Env. Microbiol. 63:903–909.

    CAS  Google Scholar 

  • Gelhaye, E., Claude, B., Cailliez, C., Burled, S., and Petitdemange, H., 1992, Multilayer adhesion to filter paper of two mesophilic, cellulolytic clostridia, Curr. Microbiol. 25:307–311.

    Article  Google Scholar 

  • Gelhaye, E., Gehin, A., and Petitdemange, H., 1993, Colonization of crystalline cellulose by Clostridium cellulolyticum ATCC 35319, Appl. Env. Microbiol. 59:3154–3156.

    CAS  Google Scholar 

  • Gerwig, G. J., de Waard, P., Vliegnthart, F. G., Morgenstern, E., Lamed, R., and Bayer, E. A., 1989, Novel O-linked carbohydrate chains in the cellulase complex (cellulosome) of Clostridium thermocellum, 2-O-methyl-N-acetylglucosamine as a component of a glycoprotein, J. Biol. Chem. 264:1027–1035.

    PubMed  CAS  Google Scholar 

  • Gerwig, G. J., Kamerling, J. P., Vliegenthart, J. F. G., Morag, E., Lamed, R., and Bayer, E. A., 1993, The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens, J. Biol. Chem. 288:26956–26960.

    Google Scholar 

  • Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., and Warren, R. A. J., 1991, Domains in microbial β-1,4-glycanases: Sequence conservation, function and enzyme families, Microbiol. Rev. 55:303–315.

    PubMed  CAS  Google Scholar 

  • Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C. J., Warren, R. A. J., and Kilburn, D. G., 1992, The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose, J. Biol. Chem. 267:6743–6749.

    PubMed  CAS  Google Scholar 

  • Ginocchio, C. C., Olmsted, S. B., Wells, C. L., and Galan, J. E., 1994, Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium, Cell 76:717–724.

    Article  PubMed  CAS  Google Scholar 

  • Gong, J., and Forsberg, C. W, 1989, Factors affecting adhesion of Fibrobactor succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose, Appl. Environ. Microbiol. 55:3039–3044.

    PubMed  CAS  Google Scholar 

  • Healy, J. B., and Young, L. Y., 1979, Anaerobic biodegradation of eleven aromatic compounds to methane, Appl. Env. Microbiol. 38:84–89.

    CAS  Google Scholar 

  • Henrissat, B., and Bairoch, A., 1993, New families in the classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J. 293:781–788.

    PubMed  CAS  Google Scholar 

  • Hiltner, P., and Dehority, B. A., 1983, Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria, Appl. Env. Microbiol. 46:642–648.

    CAS  Google Scholar 

  • Huang, L., and Forsberg, C. E., 1990, Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85, Appl. Env. Microbiol. 56:1221–1228.

    CAS  Google Scholar 

  • Hungate, R. E., 1966, The Rumen and Its Microbes, Academic Press, New York.

    Google Scholar 

  • Irwin, D. C., Specio, M., Walker, L. P., and Wilson, D. B., 1993, Activity studies of eight purified cellulases; Specificity, synergism, and binding domain effects, Biotechnol. Bioeng. 42:1002–1013.

    Article  CAS  PubMed  Google Scholar 

  • Jenner, C. F, 1982, Storage of starch, in: Plant Carbohydrates I. Intracellular Carbonhydrates (F. A. Loewus and W. Tanner, eds.), Springer-Verlag, New York, pp. 700–747.

    Google Scholar 

  • Karita, S., Sakka, K., and Ohmiya, K., 1996, Cellulose-binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV, J. Ferment. Bioeng. 81:553–556.

    Article  CAS  Google Scholar 

  • Kataeva, I., Guglielmi, G., and Béguin, P., 1997, Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein ClpA: Stoichiometry and cellulolytic activity of the complexes. Biochem. J. 326:617–624.

    PubMed  CAS  Google Scholar 

  • Kemper, M. A., Urrutia, M. M., Beveridge, T. J., Koch, A. L., and Doyle, R. J., 1993, Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis, J. Bacteriol. 175:5690–5696.

    PubMed  CAS  Google Scholar 

  • Kohring, S., Wiegel, J., and Mayer, F., 1990, Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20, Appl. Env. Microbiol. 56:3798–3804.

    CAS  Google Scholar 

  • Kuriki, T., Okada, S., and Imanaka, T., 1988, New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis, J. Bacteriol. 170:1554–1559.

    PubMed  CAS  Google Scholar 

  • Lamed, R., and Bayer, E. A., 1986, Contact and cellulolysis in Clostridium thermocellum via extensile surface organelles, Experientia 42:72–73.

    Article  CAS  Google Scholar 

  • Lamed, R., and Bayer, E. A., 1988, The cellulosome of Clostridium thermocellum, Adv. Appl. Microbiol. 33:1–46.

    Google Scholar 

  • Lamed, R., Setter, E., and Bayer, E. A., 1983a, Characterization of cellulose-binding, cellulase-containing complex in Clostridium thermocellum, J. Bacteriol. 156:828–836.

    PubMed  CAS  Google Scholar 

  • Lamed, R., Setter, E., Kenig, R., and Bayer, E. A., 1983b, The cellulosome: A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities, Biotechnol. Bioeng. Symp. 13:163–181.

    CAS  Google Scholar 

  • Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. A., 1987a, Specialized cell surface structures in cellulolytic bacteria, J. Bacteriol. 169:3792–3800.

    PubMed  CAS  Google Scholar 

  • Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. A., 1987b, Scanning electron microscopic delineation of bacterial surface topology using cationized ferritin, J. Microbiol. Methods 7:233–240.

    Article  Google Scholar 

  • Lamed, R., Morag, E., Mor-Yosef, O., and Bayer, E. A., 1991, Cellulosome-like entities in Bacteroides cellulosolvens, Curr. Microbiol. 22:27–33.

    Article  CAS  Google Scholar 

  • Leibovitz, E., and Béguin, P., 1996, A new type of cohesion domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA, J. Bacteriol. 178:3077–3084.

    PubMed  CAS  Google Scholar 

  • Leibovitz, E., Ohayon, H., Gounon, P., and Béguin, P., 1997, Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA, J. Bacteriol. 179:2519–2523.

    PubMed  CAS  Google Scholar 

  • Lithium, M. J., Brooker, B. E., Pettipher, G. L., and Harris, P. J., 1978, Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne), Appl. Env. Microbiol. 35:156–165.

    Google Scholar 

  • Liu, C.-C., and Doi, R. H., 1998, Properties of exeS, a gene for a major subunit of the Clostridium cellulovorans cellulosome, Gene 211:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G., and Eriksson, K.-E., 1985, Ecology of microbial cellulose degradation, Adv. Microb. Ecol. 8:237–299.

    CAS  Google Scholar 

  • Macfarlane, G. T., and Cummings, J. H., 1991, The colonic flora, fermentation and large bowel digestive function, in: The Large Intestine: Physiology, Pathophysiology and Disease (S. F. Phillips, J. H. Pemberton, and R. G. Shorter, eds.), Raven Press, New York, pp. 51–92.

    Google Scholar 

  • Matano, Y., Park, J. S., Goldstein, M. A., and Doi, R. H., 1994, Cellulose promotes extracellular assembly of Clostridium cellulovorans cellulosomes, J. Bacteriol. 176:6952–6956.

    PubMed  CAS  Google Scholar 

  • Matsushita, O., Russell, J. B., and Wilson, D. B., 1990, Cloning and sequencing of a Bacteroidesruminicola B 14 endoglucanase gene, J. Bacteriol. 172:3620–3630.

    PubMed  CAS  Google Scholar 

  • Mayer, F., Coughlan, M. P., Mori, Y., and Ljungdahl, L. G., 1987, Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy, Appl. Env. Microbiol 53:2785–2792.

    CAS  Google Scholar 

  • McGinnis, G. D., and Shafizadeh, F., 1991, Cellulose, in: Wood Structure and Composition (M. Lewin and I. Goldstein, eds.), Marcel Dekker, New York, pp. 139–181.

    Google Scholar 

  • McWethy, S. J., and Hartman, P. A., 1977, Purification and some properties of an extracellular alpha-amylase from Bacteroides amylophilus, J. Bacteriol. 129:1537–1544.

    PubMed  CAS  Google Scholar 

  • Minato, H., and Suto, T., 1978, Techniques for fractionation of bacteria in rumen microbial ecosystems. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom, J. Gen. Appl. Microbiol. 24:1–16.

    Google Scholar 

  • Miron, J. Yokoyamo, M. T., and Lamed, R., 1989, Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria, Appl. Microbiol. Biotechnol. 32:218–222.

    Article  Google Scholar 

  • Moon, M.-S., Blair, B. G., and Anderson, K. L., 1996, Regulation of membrane proteins by the cellulolytic anaerobes Eubacterium cellulosolvens and Clostridium cellulovorans, in: 96th General Meeting of the American Society for Microbiology, New Orleans, Louisiana, American Society for Microbiology, Washington DC, p. 538.

    Google Scholar 

  • Morag, E., Halevy, L., and Lamed, R., 1991, Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum, J. Bacteriol. 173:4155–4162.

    PubMed  CAS  Google Scholar 

  • Morris, E. J., 1988, Characterization of the adhesion of Ruminococcus albus to cellulose, FEMS Microbiol. Lett. 51:113–118.

    Article  CAS  Google Scholar 

  • Morris, E. J., and Cole, O. J., 1987, Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus, J. Gen. Microbiol. 133:1023–1032.

    CAS  Google Scholar 

  • Mosoni, P., Fonty, G., and Gouet, P., 1997, Competition between ruminal cellulolytic bacteria for adhesion to cellulose, Curr. Microbiol. 35:44–47.

    Article  PubMed  CAS  Google Scholar 

  • Mould, F. L., Orskov, E. R., and Mann, S. O., 1983, Associated effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen pH on cellulolysis in vivo and dry matter digestion of various roughages, Anim. Feed Sci. Technol. 10:15–30.

    CAS  Google Scholar 

  • Nochur, S. V., Roberts, M. F., and Demain, A. L., 1993, True cellulase production by Clostridium thermocellum grown on different carbon sources, Biotechnol. Lett. 15: 641–646.

    Article  CAS  Google Scholar 

  • Pagès, S., Bélaïch, A., Bélaïch, J.-P, Morag, E., Lamed, R., Shoham, Y., and Bayer, E. A., 1997a, Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain, Proteins 29:517–527.

    PubMed  Google Scholar 

  • Pagès, S., Gal, L., Bélaïch, A., Gaudin, C., Tardif, C., and Bélaïch, J.-P., 1997b, Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation, J. Bacteriol. 179:2810–2816.

    PubMed  Google Scholar 

  • Piggott, R. P., Rossiter, A., Ortlepp, S. A., Pembroke, J. T., and Ollington, J. F., 1984, Cloning in Bacillus subtilis of an extremely thermostable alpha amylase: Comparison with other cloned heat stable alpha amylases, Biochem. Biophys. Res. Commun. 122:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Postma, P. W., Lengeler, J. W., and Jacobson, G. R., 1993, Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria, Microbiol. Rev. 57:543–594.

    PubMed  CAS  Google Scholar 

  • Rasmussen, M. A., White, B. A., and Hespell, R. B., 1989, Improved assay for quantitating adherence of ruminal bacteria to cellulose, Appl. Env. Microbiol. 55:2089–2091.

    CAS  Google Scholar 

  • Raven, P. H., Evert, R. F., and Eichhorn, S. E., 1999, Biology of Plants, W. H. Freeman and Co., New York.

    Google Scholar 

  • Reeves, A. R., D’elia, J. N., Frias, J., and Salyers, A. A., 1996, A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch, J. Bacteriol. 178:823–830.

    PubMed  CAS  Google Scholar 

  • Reeves, A. R., Wang, G.-R., and Salyers, A. A., 1997, Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron, J. Bacteriol. 179:643–649.

    PubMed  CAS  Google Scholar 

  • Reiling, S., and Brickmann, J., 1995, Theoretical investigations on the structure and physical properties of cellulose, Macromol. Theory Simul. 4:725–743.

    Article  CAS  Google Scholar 

  • Rowland, S. P., 1975, Selected aspects of the structure and accessibility of cellulose as they relate to hydrolysis in cellulose as a chemical and energy source, in: Biotechnology and Bioengineering Symposium, No. 5 (C. Wilke, ed.), Wiley Press, New York, pp. 183–191.

    Google Scholar 

  • Saier, M. H., 1996, Cyclic AMP-independent catabolite repression in bacteria, FEMS Microbiol. Lett. 142:217–230.

    CAS  Google Scholar 

  • Sakano, Y., Hiraiwa, S.-i., Fukushima, J., and Kobayashi, T., 1982, Enzymatic properties and action patterns of Thermoactinomyces vulgaris α-amylase, Agr. Biol. Chem. 46:1121–1130.

    CAS  Google Scholar 

  • Schink, B., 1988, Principles and limits of anaerobic degradation: environmental and technological aspects, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley-Liss, New York, pp. 771–846.

    Google Scholar 

  • Schwartz, M., 1987, The maltose regulon, in: Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 2 (F. C. Neidardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, DC, pp. 1482–1502.

    Google Scholar 

  • Shimon, L. J. W., Bayer, E. A., Morag, E., Lamed, R., Yaron, S., Shoham, Y., and Frolow, F., 1997, A cohesion domain from Clostridium thermocellum: The crystal structure provides new insights into cellulosome assembly, Structure 5:381–390.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., and Hayashi, K., 1995, Microbial cellulases: Protein architecture, molecular properties, and biosynthesis, Adv. Appl. Microbiol. 40:1–44.

    PubMed  CAS  Google Scholar 

  • Sjöström, E., 1993, Wood Chemistry. Fundamental and Applications, 2nd ed., Academic Press, New York.

    Google Scholar 

  • Smith, K. A., and Salyers, A. A., 1989, Cell-associated pullulanase from Bacteroides thetaiotaomicron: Cloning, characterization, and insertional mutagenesis to determine role in pullulan utilization, J. Bacteriol. 171:2116–2123.

    PubMed  CAS  Google Scholar 

  • Smith, K. A., and Salyers, A. A., 1991, Characterization of a neopullulanase and an α-glucosidase from Bacteroides thetaiotaomicron 95-1, J. Bacteriol. 173:2962–2968.

    PubMed  CAS  Google Scholar 

  • Smolka, G. E., Birnbaum, E. R., and Darnall, D. W., 1971, Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilis α-amylase, Biochemistry 10:4556–4561.

    Article  PubMed  CAS  Google Scholar 

  • Stålbrand, H., Mansfield, S. D., Saddler, J. N., Kilburn, D. G., Warren, R. A. J., and Gilker, N. R., 1998, Analysis of molecular size distributions of cellulose recombinant Cellulomonasfimi β-1,4-glucanases, Appl. Env. Microbiol. 64:2374–2379.

    Google Scholar 

  • Stewart, C. S., 1977, Factors affecting the cellulolytic activity of rumen contents, Appl. Environ. Microbiol. 33:497–502.

    CAS  PubMed  Google Scholar 

  • Tancula, E., Feldhaus, M. J., Bedzyk, L. A., and Salyers, A. A., 1992, Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron, J. Bacteriol. 174:5609–5616.

    PubMed  CAS  Google Scholar 

  • Tokatlidis, K. S., Salamitou, S., Béguin, P., Dhurjati, P., and Aubert, J.-P, 1991, Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components, FEBS Lett. 291:185–188.

    Article  PubMed  CAS  Google Scholar 

  • Tomme, P., Warren, R. A. J., and Gilkes, N. R., 1995, Cellulose hydrolysis by bacteria and fungi, Adv. Microbiol. Physiol. 37:1–81.

    CAS  Google Scholar 

  • Vallee, B. L., Stein, E. A., Summerwell, W. N., and Fischer, E. H., 1959, Metal content of α-amylase of various origins, J. Biol. Chem. 234:2901–2905.

    PubMed  CAS  Google Scholar 

  • Vihinen, M., and Mäntsälä, P., 1989, Microbial amylolytic enzymes, Crit. Rev. Biochem. Mol. Biol. 24:329–418.

    PubMed  CAS  Google Scholar 

  • Ward, K., and Seib, P. A., 1970, Cellulose, lichenan, and chitin, in: The Carbohydrates, 2nd ed. (W. Pigman, D. Horton, and A. Herp, eds.), Academic Press, New York, pp. 413–445.

    Google Scholar 

  • Warren, R. A. J., 1996, Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50:183–212.

    Article  PubMed  CAS  Google Scholar 

  • Weimer, P. J., 1996, Why can’t ruminal bacteria digest cellulose faster? J. Dairy Sci. 79:1496–1502.

    Article  PubMed  CAS  Google Scholar 

  • White, B. A., Rasmussen, M. A., and Gardner, R. M., 1988, Methylcellulose inhibition of exo-β1,4-glucanase A from Ruminococcus flavefaciens FD1, Appl. Env. Microbiol. 54:1634–1636.

    CAS  Google Scholar 

  • Wolfe, S. L., 1993, Regulation in prokaryotes, in: Molecular and Cellular Biology (S. L. Wolfe, ed.), Wadsworth Publishing Co., Belmont, CA, pp. 727–735.

    Google Scholar 

  • Wood, T. M., 1988, Preparation of crystalline, amorphous and dyed cellulase substrates, Methods Enzymol. 160:19–25.

    CAS  Google Scholar 

  • Wood, T. M., Wilson, C. A., and Stewart, C. S., 1982, Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall, Biochem. J. 205:129–137.

    PubMed  CAS  Google Scholar 

  • Wu, J. H. D., Orme-Johnson, W. H., and Demain, A. L., 1988, Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose, Biochemistry 27:1703–1709.

    CAS  Google Scholar 

  • Yoo, S. K., and Day, D. F., 1996, Effects of oligodextran on selected pathogenic bacteria, in: Joint Meeting of the South Central Branch of the American Society for Microbiology and Mid-South Biochemists, Tulane University, New Orleans, Louisiana, p. 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Anderson, K.L. (2002). Degradation of Cellulose and Starch by Anaerobic Bacteria. In: Doyle, R.J. (eds) Glycomicrobiology. Springer, Boston, MA. https://doi.org/10.1007/0-306-46821-2_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-46821-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46239-9

  • Online ISBN: 978-0-306-46821-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics