Find out how to access previewonly content
Front propagation: Theory and applications
 Panagiotis E. Souganidis
 … show all 1 hide
Purchase on Springer.com
$29.95 / €24.95 / £19.95*
* Final gross prices may vary according to local VAT.
 [AC] S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal. 27 (1979), 1085–1095. CrossRef
 [AGLM] L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing, Arch. Rat. Mech. Anal. 123 (1992), 199–257. CrossRef
 [ACI] S. Angenent, D. L. Chopp and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ^{3}, Comm PDE 20 (1995), 1937–1958.
 [AIV] S. Angenent, T. Ilmanen and J. L. Velazquez, Nonuniqueness in geometric heat flows, in preparation.
 [AW] D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33–76. CrossRef
 [Ba1] G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).
 [Ba2] G. Barles, Discontinuous viscosity solutions of firstorder HamiltonJacobi equations: a guided visit, Nonlinear Analysis TMA, in press.
 [BBS] G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reactiondiffusion equations of bistable type, Anal. Nonlin. 9 (1992), 479–506.
 [BG] G. Barles and C. Georgelin, A simple proof of an approximation scheme for computing motion by mean curvature, SIAM J. Num. Anal. 32 (1995), 484–500. CrossRef
 [BES] G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reactiondiffusion systems of PDE, Duke Math. J. 61 (1990), 835–858. CrossRef
 [BP] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, M2AN 21 (1987), 557–579.
 [BSS] G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Cont. Opt. 31 (1993), 439–469. CrossRef
 [BS1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations, Asymptotic Analysis 4 (1989), 271–283.
 [BS2] G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and Applications, Arch. Rat. Mech. Anal., to appear.
 [BS3] G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris 319 Série I (1994), 679–684.
 [BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for HamiltonJacobi Equations with convex Hamiltonians, Comm. in PDE, in press.
 [BFRW] P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phast transitions, preprint.
 [BP1] G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force, Mat. App. 5 (1994), 229–236.
 [BP2] G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature. preprint.
 [BP3] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, preprint.
 [Bo] L. Bonaventura, Motion by curvature in an interacting spin system, preprint.
 [Br] K. A. Brakle, The motion of a surface by its Mean Curvature, Princeton University Press, Princeton, NJ, (1978).
 [BrK] L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of GinzburgLandau model, J. Diff. Eqs. 90 (1991), 211–237. CrossRef
 [Ca1] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. 92 (1986), 205–245. CrossRef
 [Ca2] G. Caginalp, Mathematical models of phase boundaries, in Material Instabilities in continuum Mechanics and Related Mathematical Problems, ed. J. Ball, Clarendon Press, Oxford (1988), 35–52.
 [Ch] X.Y. Chen, Generation and propagation of the interface for reactiondiffusion equation, J. Diff. Eqs. 96 (1992), 116–141. CrossRef
 [CGG] Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom. 33 (1991), 749–786.
 [Cr] M. G. Crandall, CIME Lectures.
 [CIL] M. G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. AMS 27 (1992), 1–67.
 [CLS] M. G. Crandall, P.L. Lions and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations, Arch. Rat. Mech. Anal. 105 (1989), 163–190. CrossRef
 [D] E. DeGiorgi, Some conjectures on flow by mean curvature, Proc. Capri Workshop, 1990, BeneventoBrunoSbardone editors.
 [DFL] A. DeMasi, P. Ferrari and J. Lebowitz, Reactiondiffusion equations for interacting particle systems, J. Stat. Phys. 44 (1986), 589–644. CrossRef
 [DOPT1] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633–696; II. Fluctuations, preprint. III. Spinodal decomposition, preprint. CrossRef
 [DOPT2] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Motion by curvature by scaling non local evolution equations, J. Stat. Phys. 73 (1993), 543–570. CrossRef
 [DOPT3] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinb. 124A (1994), 1013–1022.
 [DP] A. DeMasi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1991.
 [DS] P. DeMottoni and M. Schatzman, Development of interfaces in ℝ^{ N }, Proc. Royal Soc. Edinb. 116A (1990), 207–220.
 [EMS1] P. F. Embid, A. Majda and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales, Combust. Sci. Tech. 103 (1994), 85–115.
 [EMS2] P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the Gequation, Physics Fluids 7 (1995), 2052–2060. CrossRef
 [E1] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Soc. Edinb. 111A (1989), 359–375.
 [E2] L. C. Evans, CIME Lectures.
 [ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097–1123.
 [ESo1] L. C. Evans and P. E. Souganidis, Differential games and representation formulae for solutions of HamiltonJacobiIsaacs equations, Ind. Univ. Math. J. 33 (1984), 773–797. CrossRef
 [ESo2] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reactiondiffusion equations, Ind. Univ. Math. J. 38 (1989), 141–172. CrossRef
 [ESo3] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré, Anal. Non Lineáire 6 (Suppl.) (1994), 229–258.
 [ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom. 33 (1991), 635–681.
 [Fi] P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).
 [FM] P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions, Arch. Rat. Mech. An. 65 (1977), 335–361.
 [Fr1] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. Math. Stud. 109, Princeton, NJ (1985), Princeton University Press.
 [Fr2] M. Freidlin, Limit theorems for large deviations of reactiondiffusion equation, Ann. Prob. 13 (1985), 639–675.
 [FL] M. Freidlin and Y. T. Lee, Wave front propagation for a class of space nonhomogeneous reactiondiffusion systems, preprint.
 [Ga] J. Gärtner, Bistable reactiondiffusion equations and excitable media, Math. Nachr. 112 (1983), 125–152.
 [GGi] M.H. Giga and Y. Giga, Geometric evolution by nonsmooth interfacial energy, Hokkaido Univ., preprint.
 [GGo] Y. Giga and S. Goto, Motion of hypersurfaces and geometric equations, J. Math. Soc. Japan 44 (1992), 99–111. CrossRef
 [GGIS] Y. Giga, S. Goto, H. Ishii and M. H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Ind. Univ. Math. J. 40 (1992), 443–470. CrossRef
 [GS] Y. Giga and M.H. Sato, Generalized interface evolution with Neumann boundary condition, Proceedings Japan Acad. 67 Ser. A (1991), 263–266.
 [GT] D. Gilbarg and N. S. Trüdinger, Elliptic partial differential equations of secondorder, SpringerVerlag, New York (1983).
 [Go] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on curvature tensor, J. Diff. Int. Eqs. 7 (1994), 323–343.
 [Gu] M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rat. Mech. Anal. 104 (1988), 185–221. CrossRef
 [GSS] M. E. Gurtin, H. M. Soner and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles, J. Diff. Eqs. 119 (1995), 54–108. CrossRef
 [Il1] T. Ilmanen, The levelset flow on a manifold, Proc. Symp. in Pure Math. 54 (1993), 193–204.
 [Il2] T. Ilmanen, Convergence of the AllenCahn equation to Brakke’s motion by mean curvature, J. Diff. Geom. 38 (1993), 417–461.
 [Is1] H. Ishii, HamiltonJacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ. 26 (1985), 5–24.
 [Is2] H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, preprint.
 [IPS] H. Ishii, G. Pires and P. E. Souganidis, Threshold dynamics and front propagation, preprint.
 [IS] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227–250.
 [JLS] R. Jensen, P.L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of secondorder fully nonlinear pde’s, Proc. AMS 102 (1988), 975–978. CrossRef
 [J] R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions, Comm. PDE 20 (1995), 223–265. CrossRef
 [KKR] M. Katsoulakis, G. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the AllenCahn model for phase transitions, J. Geom. Anal., to appear.
 [KS1] M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rat. Mech. Anal. 127 (1994), 133–157. CrossRef
 [KS2] M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys. 169 (1995), 61–97. CrossRef
 [KS3] M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, J. Stat. Phys., in press.
 [LP] J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 98 (1966), 98–113. CrossRef
 [Lig] T. Liggett, Interacting Particle Systems, SpringerVerlag, New York, 1985.
 [Lio] P.L. Lions, Axiomatic derivation of image processing models, preprint.
 [LPV] P.L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of the HamiltonJacobi equations, preprint.
 [MS] A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reactiondiffusion equations with separated velocity scales, Nonlinearity 7 (1994), 1–30. CrossRef
 [NPV] R. H. Nochetto, M. Paolini and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Sc. Norm. Sup. Pisa 21 (1994), 193–212.
 [OhS] M. Ohnuma and M. Sato, Singular degenerate parabolic equations with applications to geometric evolutions, J. Dif. Int. Eqs. 6 (1993), 1265–1280.
 [OJK] T. Ohta, D. Jasnow and K. Kawasaki, Universal scaling in the motion of random intervaces, Phys. Rev. Lett. 49 (1982), 1223–1226. CrossRef
 [OsS] S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on HamiltonJacobi equations, J. Comp. Phys. 79 (1988), 12–49. CrossRef
 [RSK] J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49 (1989), 116–133. CrossRef
 [Son1] H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), 313–372. CrossRef
 [Son2] H. M. Soner, GinzburgLandau equation and motion by mean curvature, I: Convergence, J. Geom. Anal., in press, II: J. Geom. Anal., in press.
 [SonS] H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature, Comm. PDE 18 (1993), 859–894.
 [Sor] P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, preprint.
 [SorS] P. Soravia and P. E. Souganidis, Phase field theory for FitzHughNagumo type systems, SIAM J. Math. Anal. 42 (1996), 1341–1359. CrossRef
 [Sp1] H. Spohn, Large Scale Dynamics of Interacting Particles, SpringerVerlag (1991), New York.
 [Sp2] H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081–1132. CrossRef
 [X] J. X. Xin, Existence and nonexistence of traveling waves and reactiondiffusion front propagation in periodic media, in press.
 Title
 Front propagation: Theory and applications
 Book Title
 Viscosity Solutions and Applications
 Book Subtitle
 Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12–20, 1995
 Pages
 pp 186242
 Copyright
 1997
 DOI
 10.1007/BFb0094298
 Print ISBN
 9783540629108
 Online ISBN
 9783540690436
 Series Title
 Lecture Notes in Mathematics
 Series Volume
 1660
 Series ISSN
 00758434
 Publisher
 Springer Berlin Heidelberg
 Copyright Holder
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 eBook Packages
 Editors
 Authors

 Panagiotis E. Souganidis ^{(1)}
 Author Affiliations

 1. Department of Mathematics, University of WisconsinMadison, 53706, Madison, WI
Continue reading...
To view the rest of this content please follow the download PDF link above.