Skip to main content

Modification of Nanoclay Systems: An Approach to Explore Various Applications

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nanoclay has a great potential in various fields. Small amount of nanoclay can change the whole physical and chemical properties of polymers, paints, inks and lubricants by dispersing nanoclay layers into the polymer matrices. The flexibility of interlayer gallery of nanoclay helps in the release of drugs to the targeted place. The controlled release of drugs takes place on account of the drug incorporated within the nanoclay galleries. This makes these nanomaterials as potential materials with its application in pharmaceutical field. Organoclays, a type of nanoclay are also being utilized for waste water treatment in junction with other sorbents viz. activated carbon and alum. Organoclays have been found to be the finest material for water treatment especially when the water contains enough amounts of oil and grease or humic acid. The use of nanoclays as reinforcing agent or additives in polymers for various properties is exploited for various applications. This chapter provides an overview of nanoclays or types of nanoclays with significance on the utilization of nanoclays as the filler in polymer matrices for the synthesis/fabrication of polymer nanocomposites, drug delivery agents, viscosity modifier for coatings, inks and lubricants and nanoclays for industrial effluent as well as potable water treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Rahman, A.-F.M.: Chlorites in a spectrum of igneous rocks: mineral chemistry and paragenesis. Mineral. Mag. 59, 129–141 (1995)

    Article  Google Scholar 

  • Ahmad, M.B., Hoidy, W.H., Ibrahim, N.A.B., Al-Mulla, E.A.J.: Modification of montmorillonite by new surfactants. J. Eng. Appl. Sci. 4(3), 184–188 (2009)

    Google Scholar 

  • Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 28, 1–63 (2000)

    Article  Google Scholar 

  • Ambre, A.H., Katti, K.S., Katti, D.R.: Nanoclay based composite scaffolds for bone tissue engineering applications. J. Nanotechnol. Eng. Med. 1(3), 031013 (2010)

    Article  Google Scholar 

  • Ambre, A., Katti, K.S., Katti, D.R.: In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater. Sci. Eng. C-Mater. Biol. Appl. 31(5), 1017–1029 (2011)

    Article  Google Scholar 

  • Aranda, P., Eduardo, R.-H.: Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater. 4, 1395–1403 (1992)

    Google Scholar 

  • Ardenne, M., Endell, K., Hofmann, U.: Investigation of the finest fraction of bentonite and clay soil with the universal electron microscope. Ber. Deut. Keram. Ges. 21, 207–227 (1940)

    Google Scholar 

  • Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab. 95(11), 2126–2146 (2010)

    Article  Google Scholar 

  • Azeez, A.A., Rhee, K.Y., Park, S.J., Hui, D.: Epoxy clay nanocomposites—processing, properties and applications: A review. Compos. Part B-Eng. 45(1), 308–320 (2013)

    Article  Google Scholar 

  • Bai, Y.-X., Li, Y.-F., Yong Y., Yi, L.-X.: Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process. Biochem. 41, 770–777 (2006)

    Google Scholar 

  • Batra, M., Gotam, S., Dadarwal, P., Nainwani, R., Sharma, M.: Nano-clay as polymer porosity reducer: a review. J. Pharm. Sci. Technol. 3(10), 709–716 (2011)

    Google Scholar 

  • Beall, G.W.: The use of organo-clays in water treatment. Appl. Clay Sci. 24, 11–20 (2003)

    Google Scholar 

  • Becker, O., Varley, R.J., Simon, G.P.: Thermal stability and water uptake of high perfmormance epoxy layered sili-cate nanocomposites. Euro. Polym. J. 40, 187–195 (2004)

    Article  Google Scholar 

  • Bergman, J.S., Chen, H., Giannelis, E.P., Thomas, M.G., Coates, G.W.: Synthesis and characterization of polyolefin-silicate nanocomposites: a catalyst intercalation and in situ polymerization approach. Chem. Commun. (21), 2179–2180

    Google Scholar 

  • Chang, J.H., Kim, S.J., Joo, Y.L., Im, S.: Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers. Polymer 45(3), 919–926 (2004)

    Article  Google Scholar 

  • Chen, Y.-M., Tsao, T.-M., Wang, M.-K.: Removal of Crystal Violet and Methylene Blue from Aqueous Solution using Soil Nano-Clays Paper presented at the Proceedings of Conference on Environmental Science and Engineering (2011)

    Google Scholar 

  • Chen, C.G., Khobaib, M., Curliss, D.: Epoxy layered-silicate nanocomposites. Prog. Org. Coat. 47(3–4), 376–383 (2003)

    Article  Google Scholar 

  • Chigwada, G., Wang, D., Jiang, D.D., Wilkie, C.A.: Styrenic nanocomposites prepared using a novel biphenyl-containing modified clay. Polym. Degrad. Stab. 91, 755–762 (2006)

    Article  Google Scholar 

  • Chowdary, M.S., Kumar, M.S.R.N.: Effect of nanoclay on the mechanical properties of polyester and S-Glass fiber (Al). Int. J. Adv. Sci. Technol. 74, 35–42 (2015)

    Article  Google Scholar 

  • Chu, D.: The effect of matrix molecular weight on the dispersion of nanoclay in unmodified high density polyethylene (2006)

    Google Scholar 

  • Chung, Y.L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P., Lai, H.M.: Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr. Polym. 79(2), 391–396 (2010)

    Article  Google Scholar 

  • Cygan, R.T., Greathouse, J.A., Heinz, H., Kalinichev, A.G.: Molecular models and simulations of layered materials. J. Mater. Chem. 19(17), 2470–2481 (2009)

    Article  Google Scholar 

  • de Lima J.A., Pinotti, C.A., Felisberti, M.I., Gonçalves, M.C.: Blends and clay nanocomposites of cellulose acetate and poly(epichlorohydrin). Compos. Part B-Eng. 43(23), 75–81 (2012)

    Google Scholar 

  • Delhom C.D., White-Ghoorahoo. L.A., Pang, S.S.: Development and characterization of cellulose/clay nanocomposites. Compos. Part B-Eng. 41(4), 75–81 (2010)

    Google Scholar 

  • Delozier, D.M., Orwoll, R.A., Cahoon, J.F., Ladislaw, J.S., Smith, J.G., Connell, J.W.: Polyimide nanocomposites prepared from high-temperature, reduced charge organoclays. Polymer 44(8), 2231–2241 (2003)

    Article  Google Scholar 

  • Deshmanea, C., Yuan, Q., Perkins, R.S., Misra, R.D.K.: On striking variation in impact toughness of polyethylene-clay and polypropylene-clay nanocomposite systems: the effect of clay-polymer interaction. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 458(1–2), 150–157 (2007)

    Article  Google Scholar 

  • Dong, Y.C., Feng, S.S.: Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(30), 6068–6076 (2005)

    Article  Google Scholar 

  • Ewell, R.H., Insiey, Herbert: Hydrothermal synthesis of kaolinite, dickite, beidellite, and nontronite. Notl. Bur. Stand. Jour. Res. 15, 173–185 (1935)

    Article  Google Scholar 

  • Fejer, I., Kata, M., Eros, I., Berkesi, O., Dekany, I.: Release of cationic drugs from loaded clay minerals. Colloid Polym. Sci. 279(12), 1177–1182 (2001)

    Article  Google Scholar 

  • Ferreira, J.A.M., Reis, P.N.B., Costa, J.D.M., Richardson, B.C.H., Richardson, M.O.W.: A study of the mechanical properties on polypropylene enhanced by surface treated nanoclays. Compos. Part B-Eng. 42(6), 1366–1372 (2011)

    Article  Google Scholar 

  • Floody, M.C., Theng, B.K.G., Mora, M.L.: Natural nanoclays: applications and future trends-a Chilean perspective. Clay Min. 44(2), 161–176 (2009)

    Article  Google Scholar 

  • Fukushima, Y., Inagaki, S.: Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J. Incl. Phenom. 5(4), 473–482 (1987)

    Article  Google Scholar 

  • Garca-Lopez, D., Picazo, O., Merino, J., Pastor, J.: Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur. Polymer J. 39, 945 (2003)

    Article  Google Scholar 

  • Giannelis E.P: Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996)

    Google Scholar 

  • Grim, R.E., Guven, N.: Bentoniles–Geology, Mineralogy, Properties, and Uses. Elsevier, Amsterdam, p. 256 (1978)

    Google Scholar 

  • Grim, R.E.: The history of the development of clay mineralogy clays and clay minerals 36(2), 97–101 (1988)

    Article  Google Scholar 

  • Grim, R.E., Bradley, W.F.: A unique clay from the Goose Lake, Illinois, area. J. Am. Ceram. Soc. 22, 157–164 (1939)

    Article  Google Scholar 

  • Gruner, J.W.: The crystal structure of kaolinite. Z. Kristallogr. 83, 75–88 (1932)

    Google Scholar 

  • He, H., Ma. Y., Zhu, J., Yuan P., Qing Y.: Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl. Clay Sci, 48, 67–72 (2009)

    Google Scholar 

  • Hendricks, S.B., Teller, E.: X-ray interference in partially ordered layer lattices. J. Phys. Chem. 10, 147–167 (1942)

    Article  Google Scholar 

  • Hewitt, D.F.: The origin of bentonite. J. Wash. Acad. Sci. 7, 196–198 (1917)

    Google Scholar 

  • Heydari, A., Alemzadeh, I., Vossoughi, M.: Functional properties ofbiodegradable corn starch nanocomposites for food packaging applications. Mater. Des. 50, 954–961 (2013)

    Article  Google Scholar 

  • Hoffmann, B., Dietrich, C., Thomann, R., Friedrich, C., Mulhaupt, R.: Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol. Rapid Commun. 21(1), 57–61 (2000)

    Article  Google Scholar 

  • Hofmann, U., Endell, K., Wilm, D.: Kxistalstrucktur und Quellung yon Montmorillonit. Z. Kristallogr. 86(340), 348 (1933)

    Google Scholar 

  • Houdry, E., Burr, W.F., Per Jr., A.E., Peters Jr., E.W.A.: Catalytic processing by the Houdry process. Natl. Petrol. News 30, 570–580 (1938)

    Google Scholar 

  • Hunt, P.G., Poach, M.E., Matheny, T.A., Reddy, G.B., Stone, K.C.: Denitrification in marsh-pond-marsh constructed wetlands treating swine wastewater at different loading rates. Soil Sci. Soc. Am. J. 70(2), 487–493 (2006)

    Article  Google Scholar 

  • Jasra, R.V., Bajaj, H.C., Mody, H.M.: Clay as a versatile material for catalysts and adsorbents. Bull. Catal. Soc. India 9, 113–121 (1999)

    Google Scholar 

  • Jeon, H.G., Jung, H.T., Lee, S.W., Hudson, S.D.: Morphology of polymer/silicate nanocomposites-high density polyethylene and a nitrile copolymer. Polym. Bull., 41, 107 (1998)

    Google Scholar 

  • Jordan Jr., J.W.: Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Colloid Chem. 53, 294–306 (1949)

    Article  Google Scholar 

  • Kandola, B.K., Smart, G., Horrocks, A.R., Joseph, P., Zhang, S., Hull, T.R., Cook, A.: Effect of different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene-nanoclay blends. J. Appl. Polym. Sci. 108(2), 816–824 (2008)

    Article  Google Scholar 

  • Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45(3), 881–891 (2004)

    Article  Google Scholar 

  • Katti, K.S., Ambre, A.H., Peterka, N., Katti, D.R.: Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 368(1917), 1963–1980 (2010)

    Article  Google Scholar 

  • Ke, Y.C., Stroeve, P.: Polymer-Layered Silicate and Silica Nanocomposites. Elsevier Inc, Netherlands (2005)

    Google Scholar 

  • Khater, A.E., Al-Mobark, L.H., Aly, A.A., Al-Omran, A.M.: Natural radionuclides in clay deposits: concentration and dose assessment. Radiat. Prot. Dosimetry. 156(3), 321–330 (2013)

    Article  Google Scholar 

  • Kim, J., Grate, J.W., Wang, P.: Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026 (2006)

    Google Scholar 

  • Knight, W.C.: Bentonite. Eng. Min. J. 66, 491 (1898)

    Google Scholar 

  • Koo, C.M., Ham, H.T., Kim, S.O., Wang, K.H., Chung, I.J., Kim, D.C., Zin, W.C.: Morphology evolution and anisotropic phase formation of the maleated polyethylene-layered silicate nanocomposites. Macromolecules 35(13), 5116–5122 (2002)

    Article  Google Scholar 

  • Kubies, D., Pantoustier, N., Dubois, P., Rulmont, A., Jerome, R.: Controlled ring-opening polymerization of epsilon-caprolactone in the presence of layered silicates and formation of nanocomposites. Macromolecules 35(9), 3318–3320 (2002)

    Article  Google Scholar 

  • Kwak, S.Y., Jeong, Y.J., Park, J.S., Choy, J.H.: Bio-LDH nanohybrid for gene therapy. Solid State Ionics. Solid State Ionics 151(1), 229–234 (2002)

    Article  Google Scholar 

  • Lan, T., Pinnavaia, T.J.: Clay-reinforced epoxy nanocomposites. Chem. Mater. 6(12), 2216–2219 (1994)

    Article  Google Scholar 

  • LeBaron, P.C., Wang, Z., Pinnavaia, J.T.: Polymer-layered silicate nanocomposites: on overview. Appl. Clay Sci. 15, 11 (1999)

    Google Scholar 

  • Lee, W.F., Chen, Y.C.: Effect of bentonite on the physical properties and drug-release behavior of poly (AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J. Appl. Polym. Sci. 91, 2934 (2004)

    Article  Google Scholar 

  • Lee, W.F., Fu, Y.T.: Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J. Appl. Polym. Sci. 89(13), 3652–3660 (2003)

    Article  Google Scholar 

  • Lee, S.R., Park, H.M., Lim, H., Kang, T.Y., Li, X.C., Cho, W.J., Ha, C.S.: Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8), 2495–2500 (2002)

    Article  Google Scholar 

  • Lepoittevin, B., Devalckenaere, M., Pantoustiera, N., M., Alexandrea, Kubies, D., Calberg, C., Jérôme, R., Dubois, P.: Poly(e-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43, 4017–4023 (2002)

    Google Scholar 

  • Li, Z., H.N.: Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles. J. Electroanal. Chem. 558, 155–165 (2003)

    Google Scholar 

  • Li, B.X., He, J., Evans, D.G., Duan, X.: Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int. J. Pharm. 287(1–2), 89–95 (2004)

    Article  Google Scholar 

  • Lim, S-H., Dasari, A., Wang, G.-T., Yu, Z.-Z., Mai, Y.-W., Yuan, Q.: Impact fracture behaviour of nylon 6-based ternary nanocomposites. Compos. Part B-Eng. 41, 67–75 (2010)

    Google Scholar 

  • Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J., Wang, C.Y.: A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 23(9), 1981–1987 (2002)

    Article  Google Scholar 

  • Liu, L., Qi, Z., Zhu, X.: Studies on nylon 6/clay nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138 (1999)

    Google Scholar 

  • Liu, Y., Liu, H., Hu N.: Core-shell nanocluster films of hemoglobin and clay nanoparticle: direct electrochemistry and electrocatalysis. Biophys. Chem., 117, 27–37 (2005)

    Google Scholar 

  • Manias, E., Touny, A., Wu, L., Lu, B., Strawhecker, K., Gilman, J., Chung, T.: Polypropylene/silicate nanocomposites, synthetic routes and materials properties. Polym. Mater. Sci. Eng. 82, 282 (2000)

    Google Scholar 

  • Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., Chung, T.C.: Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13(10), 3516–3523 (2001)

    Article  Google Scholar 

  • Mehmel, M.: Uber die Struktur yon Halloysit und Metahalloysit. Z. Kristallogr. 90, 35–43 (1935)

    Google Scholar 

  • Messersmith, P.B., Giannelis, E.P.: Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. Part A: Polym. Chem. 33, 1047–1057 (1995)

    Article  Google Scholar 

  • Min, W., Shi. S., Wang, J., Li, Y., Duan, X.: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. Solid State Chem. 177(7), 2534–2541 (2004)

    Google Scholar 

  • Moelans, D., Cool, P., Baeyens, J., Vansant, E.F.: Using mesoporous silica materials to immobilise biocatalysis-enzymes. Catal. Commun. 6(4), 307–311 (2005)

    Article  Google Scholar 

  • Mota, M.F., Silva, J.A., Queiroz, M.B., Laborde, H.M., Rodrigues, M.G.F.: Organophilic clay for oil/water separation process by finite bath tests. Braz. J. Pet. GAS 5(2), 97–107 (2011)

    Article  Google Scholar 

  • Nah, C., Han, S.H., Lee, J., Lee, M., Lim, S., Rhee, J.: Intercalation behavior of polyimide/organoclay nanocomposites during thermal imidization. Compos. Part B, 35(2), 125 (2003)

    Google Scholar 

  • Nakano, M., Usuki, A.: Clay Nanohybrid Materials. In: Kobayashi, S., Müllen, K. (eds.) Encyclopedia of Polymeric Nanomaterials, pp. 1–4. Springer, Berlin (2014)

    Google Scholar 

  • Natarajan, K., Anu, K.S.: Nanoclay Reinforced polyurethane-epoxy blend: a review. Int. J. Res. Eng. Adv. Technol. 3(1), 78–90 (2015)

    Google Scholar 

  • Nguyen, Q.T., Baird, D.G.: An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer, 48(23), 6923–6933 (2007)

    Google Scholar 

  • Niwas, S., Gupta, P.K., De Lima, O.A.L.: Nonlinear electrical conductivity response of shaly san14d reservoir. Curr. Sci. 92(5), 612–617 (2007)

    Google Scholar 

  • Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., Kamigaito, O.: Synthesis and properties of nylon-6/clay hybrids. In: Schaefer, D.W., Mark, J.E. (eds.) Polymer Based Molecular Composites. MRS Symposium Proceedings, vol. 171, pp. 45–50 (1990)

    Google Scholar 

  • Olad, A., Rashidzadeh, A.: Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62(3), 293–298 (2008)

    Article  Google Scholar 

  • Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 29(2), 133–145 (2006)

    Article  Google Scholar 

  • Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49(15), 3187–3204 (2008)

    Article  Google Scholar 

  • Paul, M.A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P.: Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol. Rapid Commun. 24(9), 561–564 (2003)

    Article  Google Scholar 

  • Pauling, L.: The structure of micas and related minerals. Proc. Natl. Acad. Sci. Soc. 16, 123–129 (1930)

    Article  Google Scholar 

  • Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)

    Article  Google Scholar 

  • Pinnavaia, T.J., Beall, G.W.: Polymer Clay Nanocomposites. Wiley (2001)

    Google Scholar 

  • Quang, T., Donald, G.: Preparation of Polymer-Clay Nanocomposites and Their Properties. Adv. Polym. Technol. 25(4), 270–285 (2006)

    Article  Google Scholar 

  • Ratna, D., Becker, O., Krishnamurthy, R., Simon, G.P., Varley, R.J.: Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer 44(24), 7449–7457 (2003)

    Article  Google Scholar 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003)

    Google Scholar 

  • Reddy, B.: Advances in diverse industrial applications of nanocomposites (2011)

    Google Scholar 

  • Reichenbach, H.G., Bayer, J.: Dehydration and rehydration of vermiculites: IV. Arrangement of interlayer components in the 1.43 nm and 1.38 nm hydrates of mgvermiculite. Clay Miner. 29, 327–340 (1994)

    Google Scholar 

  • Ries, H.: Clays and shales of Virginia, west of the Blue Ridge. Va. GeoL Surv. Bull. 20, 118 (1920)

    Google Scholar 

  • Ross, C.S., Kerr, P.F.: Optical and tr-ray research on clay minerals (abs.). Am. Mineral. 13, 110 (1928)

    Google Scholar 

  • Ross, C.S., Kerr., P.F.: The clay minerals and their identity. J. Sediment. Petrol. 1, 35–65 (1930)

    Google Scholar 

  • Ross, C.S., Kerr., P.F.: The kaolin minerals. U.S. Geol. Surv. Prof. Pap. 165F, 151–175 (1931)

    Google Scholar 

  • Ross, C.S., Shannon, E.V.: The chemical composition of optical properties of bentonite. J. Wash. Acad. Sci. 15, 467–468 (1925)

    Google Scholar 

  • Ross, C.S., Shannon, E.V.: Minerals of bentonite and related clays and their physical properties. J. Amer. Cer. Soc. 9, 77–96 (1926)

    Article  Google Scholar 

  • Sadegh-Hassani, F., Mohammadi Nafchi, A.: Preparation and characterization of bionanocomposite films based on potato starch/halloysitenanoclay. Int. J. Biol. Macromol. 67, 458–462 (2014)

    Article  Google Scholar 

  • Sheng-Ping, Z.: US Patent 0181015 A1 (2005)

    Google Scholar 

  • Somani, R.S., Shukla, D.B., Bhalala, B.J.: Indian Patent NF No. 572/DEL/2000 (2000)

    Google Scholar 

  • Stagnaro, S.M., Volzone, C., Huck, L.: Nanoclay as adsorbent: evaluation for removing dyes used in the textile industry. Procedia Mater. Sci. 8, 586–591 (2015)

    Article  Google Scholar 

  • Su, S., Jiang, D.D., Wilkie, C.A.: Polybutadiene-modified clay and its nanocomposites. Polym. Degrad. Stab. 84(2), 279–288 (2004)

    Google Scholar 

  • Subramani S., Lee, J.Y., Kim, J.H., Cheong, I.W.: Crosslinked aqueous dispersion of silylated poly(-urethane urea)/clay nanocomposites. Compos. Sci. Technol. 67, 1561–1573 (2007)

    Google Scholar 

  • Sur, G.S., Sun, H.L., Lyu, S.G., Mark, J.E.: Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclay nanocomposites. Polymer 42(24), 9783–9789 (2001)

    Article  Google Scholar 

  • Suresh, R., Borkar, S., Sawant, V., Shende, V., Dimble, S.: Nanoclay and drug delivery. Int. J. Pharm. Sci. Nanotechnol. 3(2) (2010)

    Google Scholar 

  • Tatum J. P., Wright, R.C.: US Patent 4752342 (1988)

    Google Scholar 

  • Tcherbi-Narteh, A., Hosur, M., Triggs, E., Jeelani, S.: Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98(3), 759–770 (2013)

    Article  Google Scholar 

  • Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes. Elsevier Scientific publishing Company, Amsterdam (1979)

    Google Scholar 

  • Timmaraju, M.V., Gnanamoorthy, R., Kannan, K.: Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectorite nanocomposites. Compos. Part B-Eng. 42(4), 66–72 (2011)

    Google Scholar 

  • Torabi, Z., Mohammadi Nafchi, A.: The effects of SiO2 nanoparticles onmechanical and physicochemical properties of potato starch films. J. Chem. Health Risks 3(1), 33–42 (2013)

    Google Scholar 

  • Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39(12), 2804–2814 (2008)

    Article  Google Scholar 

  • Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Swelling behavior of montmorillonite cation exchanged for V-amino acids by Ecaprolactam. J. Mater. Res. 8(5), 1174–1184 (1993)

    Article  Google Scholar 

  • Vaia, R.A., Giannelis, E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 30, 7990–7999 (1997)

    Google Scholar 

  • Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5(12), 1694–1696 (1993)

    Google Scholar 

  • Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of 2-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5(12), 1694–1696 (1993)

    Article  Google Scholar 

  • Vamvakaki V., Chaniotakis, N.A.: Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosens. Bioelectron. 22, 2650–2655 (2007)

    Google Scholar 

  • Voon, H., Bhat, R., Easa, A., Liong, M.T., Karim, A.A.: Effect of addition ofhalloysite nanoclay and SiO2 nanoparticles on barrier and mechanicalproperties of bovine gelatin films. Food Bioprocess Technol. 5(5), 1766–1774 (2012)

    Article  Google Scholar 

  • Wagener, R., Reisinger, T.J.G.: A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44(24), 7513–7518 (2003)

    Article  Google Scholar 

  • Wang, P.: Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579 (2006)

    Google Scholar 

  • Wang, D., Wilkie C.A.: A stibonium-modified clay and its polystyrene nanocomposite. Polym. Degrad. Stab. 82, 309–315 (2003)

    Google Scholar 

  • Wang, Y., Gao, J., Ma, Y.A.: Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. US Compos. Part B-Eng. 37, 399–407 (2006)

    Google Scholar 

  • Williams, L.B., Haydel, S.E.: Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 52(7/8), 745–770 (2010)

    Article  Google Scholar 

  • Wu, S., Liu, B., Li, S.: Behaviors of enzyme immobilization onto functional microspheres. Int. J. Biol. Macromol. 37, 263–267 (2005)

    Google Scholar 

  • Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. Part A. Polym. Chem. 31(249), 3–8 (1993)

    Google Scholar 

  • Yeh, J.M., Chang, K.C.: Polymer/layered silicate nanocomposite anticorrosive coatings. J. Ind. Eng. Chem. 14(3), 275–291 (2008)

    Article  Google Scholar 

  • Zeng, Q.H., Yu, A.B., Lu, G.Q., Paul, D.R.: Clay-based polymer nanocomposites: research and commercial development. J. Nanosci. Nanotechnol. 5, 1574 (2005)

    Google Scholar 

  • Zeng, Q.H., Yu, A.B., Lu, G.Q., Paul, D.R.: Clay-based polymer nanocomposites: research and commercial development. J. Nanosci. Nanotechnol. 5(10), 1574–1592 (2005)

    Article  Google Scholar 

  • Zhao, X., Urano, K., Ogasawara, S.: Adsorption of polyethylene glycol from aqueous solution on montmorillonite clays. Colloid Polym. Sci. 267, 899–906 (1989)

    Google Scholar 

  • Zhou, H.X., Dill, K.A.: Stabilization of proteins in confined spaces. Biochemistry 40(38), 11289–11293 (2001)

    Article  Google Scholar 

Download references

Acknowledgment

The author’s are thankful to their respective universities for providing internet facilities for collecting the research paper. Author Dhananjay K. Sharma would also like to thanks the Svaagata Erasmus Mundus for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Usmani, M.A. et al. (2016). Modification of Nanoclay Systems: An Approach to Explore Various Applications. In: Jawaid , M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-1953-1_3

Download citation

Publish with us

Policies and ethics