Skip to main content

Use of Genomic Approaches in Understanding the Role of Actinomycetes as PGP in Grain Legumes

  • Chapter
  • First Online:
Book cover Plant Growth Promoting Actinobacteria

Abstract

The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive secondary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods, e.g., metagenomics, metatranscriptomics, genetic fingerprinting, proteogenomics, and metaproteomics, are more significant for classifying and discovering the immense diversity in microbial population and for understanding their interactions with other abiotic and biotic environmental elements. The opportunity of accessing inexpensive sequencing techniques has led to the assemblies of copious genomic data for actinomycetes, such as Streptomyces and related species, with the goal of discovering novel bioactive metabolic and their utility as PGP; however, the use of actinomycetes in agriculture using genomic approaches is in its initial stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth-promoting rhizobacteria: current perspective. J King Saude Univ Sci 26:1–20

    Article  Google Scholar 

  • Akeroyd M, Olsthoorn M, Gerritsma J (2013) Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools. J Biotechnol 164:112–120

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. Krieger Publishing Company, Malabar, p 467

    Google Scholar 

  • Arigoni F, Kaminski PA, Hennecke H, Elmerich C (1991) Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW. Mol Gen Genet 225:514–520

    Article  CAS  PubMed  Google Scholar 

  • Baranasic D, Gacesa R, Starcevic A, Zucko J, Blazic M, Horvat M, Gjuračić K, Fujs S, Hranueli D, Kosec G, Cullum J, Petković H (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1:e00581–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson DR, Arp DJ, Bums RH (1979) Cell-free nitrogenase and hydrogenase from actinorhizal root nodules. Science 205:688–689

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycetes Streptomyces coelicolorA3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bjerga GEK, Hjerde H, De Santi C, Williamson AK, Smalås AO, Willassen NP, Altermark B (2014) High quality draft genome sequence of Streptomyces sp. strain AW19M42 isolated from a sea squirt in Northern Norway. St Genome Sci 9:676–686

    Article  Google Scholar 

  • Chang C, Sustarich J, Bharadwaj R, Chandrasekaran A, Adams PD, Singh AK (2013) Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab Chip 13:1817–1822

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang B, Zhang W, Wu X, Zhang M, Chen T, Zhanga M, Chena T, Liua G, Dysonb P (2013) Genome sequence of Streptomyces violaceusniger strain SPC6, a halotolerant streptomycete that exhibits rapid growth and development. Genome Announc 1:00494–13

    Google Scholar 

  • Davis JR, Goodwin L, Teshima H, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides K, Mavrommatis N, Szeto E, Markowitz V, Ivanova N, Mikhailova N, Ovchinnikova G, Pagani I, Pati A, Woyke T, Pitluck S, Peters L, Nolan ML, Jason K, Sello J (2013) Genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a lignin-degrading actinomycete. Genome Announc 1:e00416–13

    PubMed  PubMed Central  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Dodd A, Swanevelder D, Featherston J, Rumbold K (2013) Draft Genome sequence of Streptomyces albulus strain CCRC 11814, an ε-poly-L-lysine-producing actinomycete. Genome Announc 1:e00696–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A 105:4601–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flinspach K, Rückert C, Kalinowski J, Heide L, Apel AK (2014) Draft genome sequence of Streptomyces niveus NCIMB 11891, producer of the aminocoumarin antibiotic novobiocin. Genome Announc 2:e01146–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Eisen JA, Nelson KE, Paulsen IT, Salzberg SL (2002) The value of complete microbial genome sequencing (you get what you pay for). J Bacteriol 23:6403–6405

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008a) SymRK defines a common genetic basis for plant root endosymbiosis with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524

    Article  CAS  PubMed  Google Scholar 

  • Girard G, Traag BA, Sangal V, Mascini N, Hoskisson PA, Goodfellow M, van Wezel GP (2013) A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol 10:130073

    Article  Google Scholar 

  • Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41:425–431

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springerplus 4:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Grüning BA, Erxleben A, Hähnlein A, Günther S (2013) Draft genome sequence of Streptomyces viridochromogenes strain Tu57, producer of avilamycin. Genome Announc 1:e00384–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Han X, Li M, Ding Z, Zhao J, Ji K, Wen M, Lu T (2012) Genome sequence of Streptomyces auratus strain AGR0001, a phoslactomycin-producing actinomycete. J Bacteriol 194:5472–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison J, Studholme DJ (2014) Recently published Streptomyces genome sequences. Microb Biotechnol 7:373–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signalling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefler BC, Konganti K, Straight PDP (2013) De novo assembly of the Streptomyces sp. strain Mg1 genome using PacBio single-molecule sequencing. Genome Announc 1:1–2

    Article  Google Scholar 

  • Hu D, Li X, Chang Y, He H, Zhang C, Jia N, Li H, Wang Z (2012) Genome sequence of Streptomyces sp. Strain TOR3209, a rhizosphere microecology regulator isolated from tomato rhizosphere. J Bacteriol 194:1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huguet-Tapia JC, Loria R (2012) Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen. J Bacteriol 194:1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huguet-Tapia JC, Badger JH, Loria R, Pettis GS (2011) Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid 65:118–124

    Article  CAS  PubMed  Google Scholar 

  • Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Res Notes 4:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RD, William WM (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611

    Article  Google Scholar 

  • Kennedy J, Flemer B, Jackson SA (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodani S, Hudson M, Durrant M, Buttner M, Nodwell J, Willey J (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:11448–11453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komaki H, Ichikawa N, Oguchi A, Hamada M, Tamura T, Fujitab N (2015) Draft genome sequence of Streptomyces albus strain NBRC 13014T, the type species of the genus Streptomyces. Genome Announc 3:1e01527–14

    Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  • Kumar S, Kaur N, Singh NK, Raghava GPS, Mayilraja S (2013) Draft genome sequence of Streptomyces gancidicus strain BKS 13–15. Genome Announc 1:2e00150–13

    Google Scholar 

  • Kumar R, Biswas K, Soalnki V, Kumar P, Tarafdar A (2014a) Actinomycetes: potential bioresource for human welfare: a review. Res J Environ Sci 2:5–16

    CAS  Google Scholar 

  • Kumar R, Biswas K, Tarafdar A, Soalnki V, Kumar P, Shankar P (2014b) Recent advancement in biotechnological and molecular approaches of actinomycetes: a review. Bull Environ Pharmacol Life Sci 3:189–192

    Google Scholar 

  • Laranjoa M, Alexandrea A, Oliveiraa S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  Google Scholar 

  • Lin Y, Hao X, Johnstone L, Miller SJ, Baltrus DA, Rensing C, Wei G (2011) Draft genome of Streptomyces zinciresistens K42, a novel metal-resistant species isolated from copper-zinc mine tailings. J Bacteriol 193:6408–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez V, Hormigo D, del Cerro C, Gómez de Santos P, García-Hidalgo J, Arroyo M, Prieto A, García JL, de la Mata I (2014) Genome sequence of Streptomyces exfoliatus DSMZ 41693, a source of poly(3-hydroxyalkanoate)-degrading enzymes. Genome Announc 2:e01272–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller JJ, Liljeroth E, Henken G, van Veen JA (1989) Fluctuations in the fluorescent pseudomonad and actinomycetes populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258

    Article  Google Scholar 

  • Miller JJ, Liljeroth E, Willemsen-de Klein MJEIM, van Veen JA (1990) The dynamics of actinomycetes and fluorescent pseudomonads in wheat rhizoplane and rhizosphere. Symbiosis 9:389–391

    Google Scholar 

  • Mullin BC, An CS (1990) The molecular genetics of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 195–214

    Google Scholar 

  • Murumkar PR, Gupta SD, Zambre VP, Giridhar R, Yadav MR (2009) Development of predictive 3DQSARCoMFA and CoMSIA models for β-aminohydroxamic acid-derived tumour necrosis factor-α converting enzyme inhibitors. Chem Biol Drug Des 73:97–107

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE: a method for identifying genes from natural ecosystems. Curr Open Microbiol 2:317–322

    Article  CAS  Google Scholar 

  • Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myronovskyi M, Tokovenko B, Manderscheid N, Petzke L, Luzhetskyy A (2013) Complete genome sequence of Streptomyces fulvissimus. J Biotechnol 168:117–118

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Mol Gen Genet 213:238–246

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Gouy M, Cournoyer B, Simonet P (1992) Nucleotide sequence of nifD from Frankia alni strain ArI3: phylogenetic inferences. Mol Biol Evol 9:495–506

    CAS  PubMed  Google Scholar 

  • O’Donnell AG, Embley TM, Goodfellow M (1993) Future of bacterial systematics. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 513–524

    Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457

    Article  CAS  PubMed  Google Scholar 

  • Pethick FE, Macfadyen AC, Tang Z, Sangal V, Liu T-T, Chu J, Kosec G, Petkovic H, Guo M, Kirby R, Hoskisson PA, Herron PR, Huntera IS (2013) Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970. Genome Announc 1:e00063–13

    Article  PubMed Central  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Ann Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Riesner D, Steger G, Zimmat R, Owens RA, Wagenhofer M, Hillen W, Vollbach S, Henco K (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389

    Article  CAS  PubMed  Google Scholar 

  • Roshan K, Tarafdar A, Saurav K, Ali S, Lone SA, Pattnaik S, Tyagi A, Biswas K, Mir ZA (2013) Isolation and screening of bioactive compound from actinomycetes isolated from salt pan of Marakanam district of the state Tamil Nadu, India. Elixir Bio Technol 61:16826–16831

    Google Scholar 

  • Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Iftime D, Musiol EM, Blin K, Wohlleben W, Pühler A, Kalinowski J, Weber T (2013) Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. J Biotechnol 168:739–740

    Article  PubMed  Google Scholar 

  • Rückert C, Kalinowski J, Heide L, Apel AK (2014) Draft genome sequence of Streptomyces roseochromogenes subsp. oscitans DS 12.976, producer of the aminocoumarin antibiotic clorobiocin. Genome Announc 2:e01147–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiva K (2001) Actinomycetes of an Indian mangrove (Pichavaram) environment: an inventory. Ph.D. thesis, Annamalai University, India, p 91

    Google Scholar 

  • Short JM, Keller M, Lafferty WM (2003) High throughput or capillary-based screening for a bioactivity or biomolecule. US patent application 2003, S20030049841A1

    Google Scholar 

  • Simonet P, Bardin R, Haurat J, Moiroud A, Normand P (1986) Localization of nif genes on a large plasmid in Frankia sp. strain ULQ0132105009. Mol Gen Genet 204:492–495

    Article  CAS  Google Scholar 

  • Singh S, Parniske M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15:444–453

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Li X, Mize T (2013) Sensitive, high throughput detection of proteins in individual, surfactant stabilized picoliter droplets using NanoESI mass spectrometry. Anal Chem 8:2–19

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 92:2647–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) Cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607

    Article  CAS  PubMed  Google Scholar 

  • Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S (2008) Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190:4139–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87

    Article  CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twigg P, An C, Mullin BC (1990) Nucleotide sequence of nifD, the structural gene coding for a subunit of the Mo-Fe protein of the nitrogenase complex from the actinomycete Frankia. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation achievements and objectives. Chapman and Hall, New York, p 771

    Google Scholar 

  • Vikram S, Kumar S, Subramanian S, Raghava GPS (2012) Draft genome sequence of the nitrophenol-degrading actinomycete Rhodococcus imtechensis RKJ300. J Bacteriol 194:3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Hou Y, Peng J, Qi X, Zhang Q, Bai F (2012a) Bioactivity-based HPLC tandem Q/TOF for alpha-glucosidase inhibitors: screening, identification and quantification from actinomycetes. Lat Am J Pharm 31:693–698

    CAS  Google Scholar 

  • Wang L, Wang S, He Q, Yu T, Li Q, Hong B (2012b) Draft genome sequence of Streptomyces globisporus C-1027, which produces an antitumor antibiotic consisting of a nine-membered enediyne with a chromoprotein. J Bacteriol 194:4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S, Zheng H, Jiang W, Chen D, Zhao GP, Zhao W (2014a) Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics 15:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Xia J, Feng X, Li S, Xu H, Bo F, Sun Z (2014b) Genome sequence of Streptomyces albulus PD-1, a productive strain for epsilon-poly-L-lysine and poly-L diaminopropionic acid. Genome Announc 2:e00297–14

    PubMed  PubMed Central  Google Scholar 

  • Yang H, He T, Wu W, Zhu W, Lu B, Sun W (2013) Whole-genome shotgun assembly and analysis of the genome of Streptomyces mobaraensis DSM 40847, a strain for industrial production of microbial transglutaminase. Genome Announc 1:e0014313

    PubMed  Google Scholar 

  • Yang H, Zhang Z, Yan R, Wang Y, Zhu D (2014) Draft genome sequence of Streptomyces sp. strain PRh5, a novel endophytic actinomycete isolated from dongxiang wild rice root. Genome Announc 2:e12–e14

    Google Scholar 

  • Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Cheng B, Hu J, Kyeremeh K, Wang X, Jaspars M, Deng H, Deng Z, Honga K (2015) Draft genome sequence of Streptomyces sp. strain CT34, isolated from a Ghanaian soil sample. Genome Announc 3:e01508–e01514

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D (2012) Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem Biol 19:422–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou W, Zhuang Y, Liang X, Liu T (2013) Draft genome sequence of Streptomyces bottropensis ATCC 25435, a bottromycin-producing actinomycete. Genome Announc 1:e00019–13

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sharma, M., Tarafdar, A., Ghosh, R. (2016). Use of Genomic Approaches in Understanding the Role of Actinomycetes as PGP in Grain Legumes. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_16

Download citation

Publish with us

Policies and ethics