Skip to main content

Electrodynamics of Graphene/Polymer Multilayers in the GHz Frequency Domain

  • Chapter

Abstract

The electromagnetic properties of graphene/PMMA multilayers are calculated by electrodynamics techniques. It is shown that an optimum number of layers exists for which the absorption of GHz radiations by the graphene planes is maximum. Numerical calculations using the rigorous coupled wave analysis method demonstrate that the absorption of GHz radiations by the optimum graphene/PMMA multilayer is robust in the sense that it does not depend on defects of the graphene planes to first order in concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If one ignores the transmittance, these conditions correspond to an ideal black body (A = 1).

  2. 2.

    This result can be used for a thin conducting film after substitution of \(\sigma\) by the product of the bulk conductivity times the film thickness d, provided (k 0 δ)2 ≪ 1 and (dδ)2 ≪ 1 where δ is the skin depth of the material the film is made of. For graphite, δ = 16 μm at 10 GHz.

  3. 3.

    The formalism developed for the s polarization is used on account of its greater simplicity. Of course, the results are independent of the polarization in normal incidence.

  4. 4.

    This high value of \(\sigma _{g}\) was obtained on graphene produced on a well oriented (0001) surface of 4HSiC. A miscut of 0.5 creates steps on the surface, which reduces the measured conductance by a factor of 3

References

  1. Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261–270

    Article  ADS  Google Scholar 

  2. Hwang Y, Aizawa T, Hayami W, Otani S, Ishizawa Y, Park SJ (1992) Surface phonon and electronic structure of a graphite monolayer formed on ZrC(111) and (001) surfaces. Surf Sci 271:299–307

    Article  ADS  Google Scholar 

  3. Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S (1993) Electronic states of monolayer graphite formed on TiC(111) surface. Surf Sci 291:93–98

    Article  ADS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  Google Scholar 

  5. Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, Hoboken, 980 pp

    Google Scholar 

  6. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  Google Scholar 

  7. Kuzhir P, Paddubskaya A, Bychanok D, Nemilentsau A, Shuba M, Plusch A, Maksimenko S, Bellucci S, Coderoni L, Micciulla F, Sacco I, Rinaldi G, Macutkevic J, Seliuta D, Valusis G, Banys J (2011) Microwave probing of nanocarbon based epoxy resin composite films: toward electromagnetic shielding. Thin Solid Film 519:4114–4118

    Google Scholar 

  8. Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50:2202–2208

    Google Scholar 

  9. Kuzhir PP, Paddubskaya AG, Maksimenko SA, Kuznetsov VL, Moseenkov S, Romanenko AI, Shenderova OA, Macutkevic J, Valusis G, Lambin P (2012) Carbon onion composites for EMC applications. IEEE Trans Electromagn Compat 54:6–16

    Google Scholar 

  10. Kuzhir P, Paddubskaya A, Shuba M, Maksimenko S, Celzard A, Fierro V, Amaral-Labat G, Pizzi A, Macutkevic J, Valusis G, Banys J, Bistarelli S, Mastrucci M, Micciulla F, Sacco I, Bellucci S (2012) Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/CNT composites. J Nanophotonics 6:061715.1–061715.18

    Article  Google Scholar 

  11. Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C (2013) Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 113:124103.1

    Article  Google Scholar 

  12. Gao RXK, Hoefer WJR, Low TS, Li EP (2013) Robust design of electromagnetic wave absorber using the Taguchi method. IEEE Trans Electromagn Compat 55:1076–1083

    Article  Google Scholar 

  13. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press ltd, Oxford, pp 279–283

    MATH  Google Scholar 

  14. Weston DA (2001) Electromagnetic compatibility: principles and applications, chapter 6, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  15. Saville P (2005) Review of radar absorbing materials, Defence R&D Canada – Atlantic TM 2005-003, 5–6

    Google Scholar 

  16. Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Kaplas T, Svirko Y (2013) Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films. Appl Phys Lett 103:073117.1–073117.3

    Article  Google Scholar 

  17. Buron JD, Pizzocchero F, Jessen BS, Booth TJ, Nielsen PF, Hansen O, Hilke M, Whiteway E, Jepsen PU, Boggild P, Petersen DH (2014) Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. Nano Lett 14:6348–6355

    Google Scholar 

  18. Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin P, Kaplas T, Svirko Y (2014) Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci Rep 4:7191.1–7191.5

    Article  Google Scholar 

  19. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotechnology 7:330–334

    Article  ADS  Google Scholar 

  20. Gusynin VP, Sharapov SG, Carbotte JP (2006) Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett 96:256802.1–256802.4

    Article  ADS  Google Scholar 

  21. Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004.1–012004.7

    Article  Google Scholar 

  22. Mak KF, Ju L, Wang F, Heinz TF (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid St Commun 152:1341–1349

    Article  ADS  Google Scholar 

  23. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  Google Scholar 

  24. Othman MAK, Guclu C, Capolino F (2013) Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express 21:7614–7632

    Article  ADS  Google Scholar 

  25. Othman MAK, Guclu C, Capolino F (2013) Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J Nanophotonics 7:073089.1–073089.15

    Article  Google Scholar 

  26. Rouhi N, Capdevila S, Jain D, Zand K, Wang YY, Brown E, Jofre L, Burke P (2012) Terahertz graphene optics. Nano Res 5:667–678

    Article  Google Scholar 

  27. Gomez-Diaz JS, Moldovan C, Capdevila S, Romeu J, Bernard LS, Magrez A, Ionescu AM, Perruisseau-Carrier J (2015) Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nature Commun 6:6334.1–6334.7

    Article  Google Scholar 

  28. Balci O, Polat EO, Kakenov N, Kocabas C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Commun 6:6628.1–6628.9

    Google Scholar 

  29. Barkoskii LM, Borzdov GN, Lavrinenko AV (1987) Fresnel’s reflection and transmission operators for stratified gyroanisotropic media. J Phys A Math Gen 20:1095–1106

    Article  ADS  Google Scholar 

  30. Lambin P, Vigneron JP, Lucas AA, Dereux A (1987) Electrodynamics of a plane-stratified medium, with applications to electron-energy-loss spectroscopy, infrared reflectivity measurement, and attenuated total reflection. Phys Scr 35:343–353

    Article  ADS  Google Scholar 

  31. Wall HS (2000) Analytic theory of continued fractions. AMS Chelsea Publishing, Providence, 433 pp

    Google Scholar 

  32. Dereux A, Vigneron J-P, Lambin P, Lucas AA (1987) Polariton structure and spectral reflectance of multilayered semiconducting materials. Phys Scr 35:338–342

    Article  ADS  Google Scholar 

  33. Lobet M, Reckinger N, Henrard L, Lambin P (2015) Robust electromagnetic absorption by graphene/polymer heterostructures. Nanotechnology 26:285702.1–285702.9

    Article  Google Scholar 

  34. Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21:9144–9155

    Article  ADS  Google Scholar 

  35. Asti G, Coïsson R (2011) Electrodynamics in one-dimension: radiation and reflection. Eur J Phys 32:459–466

    Article  MATH  Google Scholar 

  36. Apell SP, Hanson GW, Hägglund C (2012) eprint arXiv:1201.3071, High optical absorption in graphene, 16 pp

    Google Scholar 

  37. Lamb JW (1996) Miscellaneous data on materials for millimetre and submillimetre optics. Int J Infrared Millim Waves 17:1997–2030

    Article  ADS  Google Scholar 

  38. Rouhi N, Jain D, Capdevila S, Jofre L, Brown E, Burke PJ (2011) Broadband conductivity of graphene from DC to THz. In: 11th IEEE international conference on nanotechnolgy, Portland, 1205–1207

    Google Scholar 

  39. Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Volynets N, Voronovich S, Lambin P, Kaplas T, Svirko Y (2016, Submitted) Perfect absorption of microwaves in graphene. Appl Phys Lett

    Google Scholar 

  40. Liu HX, Yao BF, Li L, Shi XW (2011) Analysis and design of thin planar absorbing structure using Jerusalem cross slot. Prog Electromagn Res B 31:261–281

    Article  Google Scholar 

  41. Biró LP, Lambin P (2013) Grain boundaries in graphene grown by chemical vapor deposition. New J Phys 15:035024.1–035024.37

    Article  Google Scholar 

  42. Moharam M, Gaylord T (1981) Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71:811

    Article  ADS  Google Scholar 

  43. Tapaszto L, Nemes-Incze P, Dobrik G, Jae Yoo K, Hwang C, Biró LP (2012) Mapping the electronic properties of individual graphene grain boundaries. Appl Phys Lett 100:053114.1–053114.4

    Article  Google Scholar 

  44. Nemes-Incze P, Yoo KJ, Tapaszto L, Dobrik G, Labar J, Horvath ZE, Hwang C, Biró LP (2011) Revealing the grain structure of graphene grown by chemical vapor deposition. Appl Phys Lett 99:023104.1–023104.3

    Article  Google Scholar 

  45. Kuzhir P et al (2016) Graphene/polymer multilayers at high frequencies: no effect of graphene grain size on the electromagnetic shielding effectiveness. Carbon

    Google Scholar 

  46. Lamberti P, Tucci V (2007) Interval approach to robust design. COMPEL Int J Comput Math Electr Electron Eng 26:285–297

    MATH  Google Scholar 

  47. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnology 5:574–578

    Article  ADS  Google Scholar 

  48. Wu B, Tuncer HM, Katsounaros A, Wu W, Cole MT, Ying K, Zhang L, Milne WI, Hao Y (2014) Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 77:814–822

    Article  Google Scholar 

  49. Riedl C, Coletti C, Starke U (2010) Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 43:374009.1–374009.27

    Article  Google Scholar 

  50. Ji SH, Hannon JB, Tromp RM, Perebeinos V, Tersoff J, Ross FM (2012) Atomic-scale transport in epitaxial graphene. Nat Mater 11:114–119

    Article  ADS  Google Scholar 

  51. Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer WA, Lanzara A, Conrad EH (2009) First direct observation of a nearly ideal graphene band structure. Phys Rev Lett 103:226803.1–226803.4

    Article  ADS  Google Scholar 

  52. Xuebin Li (2008) PhD thesis, Epitaxial graphene films on SiC: growth, characterization and devices, Georgia Institute of Technology, Atlanta, 145 pp

    Google Scholar 

Download references

Acknowledgements

The research leading to this work has received funding from the European Union Seventh Framework Program under grant agreement no. 604391 Graphene Flagship and grant agreement no. 318617 Marie Curie International Research Staff Exchange Scheme Fellowship (MC-IRSES FAEMCAR project). Helpful discussions of the authors with Prof. Yu. Svirko, Dr. T. Kaplas, Prof. A.V. Lavrinenko and Dr. F. Joucken are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lambin .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Deviation of Equation (3.1)

In this Appendix, the absorbance A of a conducting slab in normal incidence is derived. The formalism constructed for the s polarization is used, for it readily leads to an approximate, though accurate expression. Starting from \(A = 1 - R - T\) and using (3.12), (3.13), (3.9), and (3.5), one obtains

$$\displaystyle{ A = \frac{4n_{I}} {\vert \xi _{s}(0) - in_{I}\vert ^{2}}\,\left (-\mbox{ Im}\,\xi _{s}(0)\, -\, n_{T}\left \vert \frac{b} {a + in_{T}}\right \vert ^{2}\right ) }$$
(3.29)

where, as before, n I and n T are the indices of refraction of the incidence and emergence media, respectively (both assumed real), a and b are the coefficients defined by (3.8) for the s polarization. The assumption that will be made is | a | ≫ n T . If n denotes the complex refractive index of the slab and d the slab thickness, this condition is met when either | n | ≫ 1 or | nk 0 d | ≪ 1. The limit \(d \rightarrow 0\) belongs to the latter case. In both cases, the denominator of the last term in the right-hand side of (3.29) can be approximated to a. Substituting a and b by their expressions (3.8) yields

$$\displaystyle{ A = \frac{4n_{I}} {\vert \xi _{s}(0) - in_{I}\vert ^{2}}\,\left (-\mbox{ Im}\,\xi _{s}(0)\, -\, \frac{n_{T}} {\vert \cos (nk_{0}d)\vert ^{2}}\right )\mbox{.} }$$
(3.30)

It suffices to decompose \(n = n_{1} + in_{2}\) in its real and imaginary parts and to use the definition of \(\xi _{s}(0)\) in terms of the surface admittance Y s of the slab to arrive at the final result:

$$\displaystyle{ A = \frac{4n_{I}} {\vert \tilde{Y _{s}} + n_{I}\vert ^{2}}\left (\mbox{ Re}\,\tilde{Y _{s}} - \frac{2n_{T}} {\cos (2n_{1}k_{0}d) +\cosh (2n_{2}k_{0}d)}\right )\mbox{,} }$$
(3.31)

where \(\tilde{Y _{s}} = Y _{s}/\epsilon _{0}c\). Equation 3.1 follows from the equation just obtained by setting \(n_{I} = n_{T} = 1\). An expression of \(\tilde{Y _{s}}\) consistent with the condition | a | ≫ n T assumed above can be obtained from (3.8) and (3.5):

$$\displaystyle{ \tilde{Y _{s}} = -i\,n\,\tan (nk_{0}d) + \frac{n_{T}} {\cos ^{2}(nk_{0}d)}\,[1 + O(n_{T}/a)]\mbox{.} }$$
(3.32)

Finally, it is worth mentioning that the limit \(d \rightarrow 0\) of (3.30) reproduces (3.18) after (3.10) and (3.5) have been used.

Appendix 2: Negative-Imaginary Transformation

In this Appendix, it is demonstrated that the continued-fraction generator (3.7), \(\xi (z_{u}) = a - b^{2}/[a +\xi (z_{l})]\), is a complex rational function of \(\xi (z_{l})\) whose imaginary part is negative for any complex value \(\xi (z_{l})\) such that \(\mbox{ Im}\,\xi (z_{l}) < 0\). The demonstration is based on two important inequalities fulfilled by the a and b coefficients (3.8), namely

$$\displaystyle\begin{array}{rcl} \mbox{ Im}\,a \leq 0\qquad (3.33a)\qquad \vert \mbox{ Im}\,b\vert \leq \vert \mbox{ Im}\,a\vert \mbox{.}\qquad (3.33b)& & {}\\ \end{array}$$

The starting point of the proof of (3.33a) and (3.33b) is the following property of the tangent function:

$$\displaystyle\begin{array}{rcl} & & \forall Z \in Q1\qquad \qquad \arg Z \leq \arg \tan Z \leq \pi -\arg Z {}\\ & & \forall Z \in Q2\qquad \qquad \pi -\arg Z \leq \arg \tan Z \leq \arg Z {}\\ \end{array}$$

where Q1 and Q2 denote the first and second quadrants, respectively, of the complex plane, the argument function being defined between −π and +π. Consider two arbitrary complex numbers u and v that both belong to Q1 and any positive real number κ. Let

$$\displaystyle{ C = (u/v)\cot (\kappa uv)\qquad (3.34a)\qquad T = (u/v)\tan (\kappa uv)\mbox{.}\qquad (3.34b) }$$

From the property of the \(\tan\) function just underlined, it is easy to show that

$$\displaystyle{ -\pi + 2\theta _{u} \leq \arg C \leq -2\theta _{v}2\theta _{u} \leq \arg T \leq \pi -2\theta _{v} }$$

when uv ∈ Q1, where \(\theta _{u} =\arg u\) and \(\theta _{v} =\arg v\), and

$$\displaystyle{ -2\theta _{v} \leq \arg C \leq -\pi + 2\theta _{u}\pi - 2\theta _{v} \leq \arg T \leq 2\theta _{u} }$$

when uv ∈ Q2. The conclusion that can immediately be drawn is

$$\displaystyle{ \mbox{ Im}\,C \leq 0\qquad (3.35a)\qquad \mbox{ Im}\,T \geq 0\mbox{.}\qquad (3.35b) }$$

According to (3.8), the a coefficient has the form (3.34a) with \(u = \sqrt{f}\), \(v = \sqrt{g}\) and κ = k 0 d. Both f and g have a positive imaginary part, their square roots are located in Q1 or Q3. The first determination can be chosen without loss of generality, because a is an even function of both \(\sqrt{f}\) and \(\sqrt{g}\). The hypothesis that u and v belong to Q1 is therefore verified. The inequality (3.33a) then follows directly from (3.35a). The expressions (3.8) of the a and b coefficients readily lead to \(b + a = \sqrt{f/g}\cot (\sqrt{fg}\,k_{0}d/2)\) and \(b - a = \sqrt{f/g}\tan (\sqrt{fg}\,k_{0}d/2)\) which take the forms (3.34a) and (3.34b), respectively, with the consequences Im b ≤ | Im a | and Im b ≥ − | Im a | . Condition (3.33b) is thereby demonstrated.

It becomes now easy to prove the negative imaginary property of the transformation (3.7). Consider first the limiting case Im a = 0 of the condition (3.33a), which implies Im b = 0 according to (3.33b). From (3.7), then, \(\mbox{ Im}\,\xi (z_{u}) = (b^{2}/\vert a +\xi (z_{l})\vert ^{2})\,\mbox{ Im}\,\xi (z_{l})\) is indeed negative when \(\mbox{ Im}\,\xi (z_{l}) < 0\).

Assume now Im a < 0 and write (3.7) as \(\xi (z_{u}) = N/D\) where \(D = \vert a +\xi (z_{l})\vert ^{2}\) and \(N = [a^{2} - b^{2} + a\xi (z_{l})][a +\xi (z_{l})]^{{\ast}}\). With the hypotheses Im a < 0 and \(\mbox{ Im}\,\xi (z_{l}) < 0\), D is strictly positive. All the attention can therefore be put on Im N. Let \(a = a_{1} + ia_{2}\), \(b = b_{1} + ib_{2}\) and \(\xi (z_{l}) =\xi _{1} + i\xi _{2}\). Then \(\mbox{ Im}\,N =\alpha \xi _{ 2}^{2} + 2\beta \xi _{2}+\gamma\), where α = a 2 < 0, \(\beta = a_{2}^{2} - b_{2}^{2} + b_{1}^{2} \geq b_{1}^{2} \geq 0\) (see (3.33b)), and \(\gamma = a_{2}(a_{1} +\xi _{1})^{2} - 2b_{1}b_{2}(a_{1} +\xi _{1}) + a_{2}(a_{2}^{2} - b_{2}^{2} + b_{1}^{2})\).

The γ coefficient is a negative-definite quadratic function of the variable \(a_{1} +\xi _{1}\): the coefficient of its second-degree term is negative (condition 3.33a) and its discriminant \(-(a_{2}^{2} - b_{2}^{2})(a_{2}^{2} + b_{1}^{2})\) is also negative (condition 3.33b). As a result, Im N is a quadratic function of \(\xi _{2}\) whose value at \(\xi _{2} = 0\) is negative, which increases with increasing \(\xi _{2}\) and reaches its maximum at the positive value \(\xi _{2} = -\beta /\alpha\). Consequently, Im N remains negative for all negative values of \(\xi _{2}\), QED.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lambin, P., Lobet, M., Batrakov, K., Kuzhir, P. (2016). Electrodynamics of Graphene/Polymer Multilayers in the GHz Frequency Domain. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_3

Download citation

Publish with us

Policies and ethics