Skip to main content

Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

An autosomal recessive syndrome of hyperphosphatasia (elevated circulating alkaline phosphatase (AP), seizures and neurologic deficits) was first described by Mabry and colleagues in 1970. Over the ensuing four decades, few cases were reported. In 2010, however, new families were identified and the syndromic nature of the disorder confirmed. Shortly thereafter, next generation sequencing was used to characterize causative defects in the glycosyl phosphatidylinositol (GPI) biosynthetic pathway, based partly on our understanding of how AP is anchored by GPI to the plasma membrane. Whether the seizures and cognitive defects seen in Mabry syndrome patients are attributable in part to the constant hyperphosphatasia is not known, as there are more than 250 other proteins dependent on GPI for their anchoring to the plasma membrane . However, Mabry syndrome may provide a new window on AP function in growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson BB, O’Brien H, Griffin GE, Mollin DL (1980) Hydrolysis of pyridoxal-5′-phosphate in plasma in conditions with raised alkaline phosphate. Gut 21(3):192–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343(3):521–536. doi:10.1007/s00441-010-1111-4

    Article  CAS  PubMed  Google Scholar 

  • Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 51(3):203–207. doi:10.1136/jmedgenet-2013-102156

    Article  CAS  PubMed  Google Scholar 

  • Cole D, Whyte M (1997) Hyperphosphatasia syndromes. In: Cohen M Jr, Baum B (eds) Studies in stomatology and craniofacial biology. IOS Press, Amsterdam, pp 245–272

    Google Scholar 

  • Dakshinamurti K, Sharma SK, Geiger JD (2003) Neuroprotective actions of pyridoxine. Biochim Biophys Acta 1647(1–2):225–229

    Article  CAS  PubMed  Google Scholar 

  • Gamage DG, Hendrickson TL (2013) GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 48(5):446–464. doi:10.3109/10409238.2013.831024

    Article  CAS  PubMed  Google Scholar 

  • Gillessen-Kaesbach G, Meinecke P (1999) Brachytelephalangy, hyperphosphatasia and mental retardation: a newly recognized autosomal recessive condition. Med Genet 11 (117)

    Google Scholar 

  • Gomes WJ, Hunter JL (1970) Mental retardation, cataracts, and unexplained hyperphosphatasia. Arch Dis Child 45(243):726–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, Abou Jamra R (2013) Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet 92(4):575–583. doi:10.1016/j.ajhg.2013.03.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heales S, Neergheen V, Pope S, Oppenheim M, Dadhra J, Eltze C, Kurian M, Gissen P, Mills P, Clayton P (2013) P-518: Hyperphosphatasia associated with markedly low CSF pyridoxal phosphate (PLP) but no impairment of monoamine metabolism [2013 12th International Congress of Inborn Errors of Metabolism (ICIEM) abstracts]. J Inherit Metab Dis 36(2):S248. doi:10.1007/s10545-013-9633-z

    Google Scholar 

  • Horn D, Krawitz P, Mannhardt A, Korenke GC, Meinecke P (2011) Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum. Am J Med Genet Part A 155A(8):1917–1922. doi:10.1002/ajmg.a.34102

    Article  PubMed  Google Scholar 

  • Horn D, Schottmann G, Meinecke P (2010) Hyperphosphatasia with mental retardation, brachytelephalangy, and a distinct facial gestalt: delineation of a recognizable syndrome. Eur J Med Genet 53(2):85–88. doi:10.1016/j.ejmg.2010.01.002

    Article  PubMed  Google Scholar 

  • Horn D, Wieczorek D, Metcalfe K, Baric I, Palezac L, Cuk M, Petkovic Ramadza D, Kruger U, Demuth S, Heinritz W, Linden T, Koenig J, Robinson PN, Krawitz P (2014) Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome. Eur J Hum Genet 22(6):762–767. doi:10.1038/ejhg.2013.241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard MF, Murakami Y, Pagnamenta AT, Daumer-Haas C, Fischer B, Hecht J, Keays DA, Knight SJ, Kolsch U, Kruger U, Leiz S, Maeda Y, Mitchell D, Mundlos S, Phillips JA 3rd, Robinson PN, Kini U, Taylor JC, Horn D, Kinoshita T, Krawitz PM (2014) Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am J Hum Genet 94(2):278–287. doi:10.1016/j.ajhg.2013.12.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91(1):146–151. doi:10.1016/j.ajhg.2012.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, Zhu N, Kinoshita T, Mundlos S, Hecht J, Robinson PN, Horn D (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92(4):584–589. doi:10.1016/j.ajhg.2013.03.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829. doi:10.1038/ng.653

    Article  CAS  PubMed  Google Scholar 

  • Kruse K, Hanefeld F, Kohlschutter A, Rosskamp R, Gross-Selbeck G (1988) Hyperphosphatasia with mental retardation. J Pediatr 112(3):436–439

    Article  CAS  PubMed  Google Scholar 

  • Kuki I, Takahashi Y, Okazaki S, Kawawaki H, Ehara E, Inoue N, Kinoshita T, Murakami Y (2013) Vitamin B6-responsive epilepsy due to inherited GPI deficiency. Neurology 81(16):1467–1469. doi:10.1212/WNL.0b013e3182a8411a

    Article  PubMed  Google Scholar 

  • Kvarnung M, Nilsson D, Lindstrand A, Korenke GC, Chiang SC, Blennow E, Bergmann M, Stodberg T, Makitie O, Anderlid BM, Bryceson YT, Nordenskjold M, Nordgren A (2013) A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT. J Med Genet 50(8):521–528. doi:10.1136/jmedgenet-2013-101654

    Article  CAS  PubMed  Google Scholar 

  • Mabry CC, Bautista A, Kirk RF, Dubilier LD, Braunstein H, Koepke JA (1970) Familial hyperphosphatase with mental retardation, seizures, and neurologic deficits. J Pediatr 77(1):74–85

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Kinoshita T (2011) Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 50(4):411–424. doi:10.1016/j.plipres.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Marcelis CL, Rieu P, Beemer F, Brunner HG (2007) Severe mental retardation, epilepsy, anal anomalies, and distal phalangeal hypoplasia in siblings. Clin Dysmorphol 16(2):73–76. doi:10.1097/MCD.0b013e3280147130

    Article  PubMed  Google Scholar 

  • Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287(9):6318–6325. doi:10.1074/jbc.M111.331090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47(27):6991–7000. doi:10.1021/bi8006324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabe P, Haverkamp F, Emons D, Rosskamp R, Zerres K, Passarge E (1991) Syndrome of developmental retardation, facial and skeletal anomalies, and hyperphosphatasia in two sisters: nosology and genetics of the Coffin-Siris syndrome. Am J Med Genet 41(3):350–354. doi:10.1002/ajmg.1320410317

    Article  CAS  PubMed  Google Scholar 

  • Rabie T, Muhlhofer W, Bruckner T, Schwab A, Bauer AT, Zimmermann M, Bonke D, Marti HH, Schenkel J (2010) Transient protective effect of B-vitamins in experimental epilepsy in the mouse brain. J Mol Neurosci: MN 41(1):74–79. doi:10.1007/s12031-009-9286-4

    Article  CAS  PubMed  Google Scholar 

  • Schrier SA, Bodurtha JN, Burton B, Chudley AE, Chiong MA, D’Avanzo MG, Lynch SA, Musio A, Nyazov DM, Sanchez-Lara PA, Shalev SA, Deardorff MA (2012) The Coffin-Siris syndrome: a proposed diagnostic approach and assessment of 15 overlapping cases. Am J Med Genet Part A 158A(8):1865–1876. doi:10.1002/ajmg.a.35415

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson MD, Killoran A, Percy ME, Nezarati M, Cole DE, Hwang PA (2006) Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder? Pediatr Neurol 34(4):303–307. doi:10.1016/j.pediatrneurol.2005.08.020

    Article  PubMed  Google Scholar 

  • Thompson MD, Nezarati MM, Gillessen-Kaesbach G, Meinecke P, Mendoza-Londono R, Mornet E, Brun-Heath I, Squarcioni CP, Legeai-Mallet L, Munnich A, Cole DE (2010) Hyperphosphatasia with seizures, neurologic deficit, and characteristic facial features: Five new patients with Mabry syndrome. Am J Med Genet Part A 152A(7):1661–1669. doi:10.1002/ajmg.a.33438

    Article  PubMed  Google Scholar 

  • Thompson MD, Roscioli T, Marcelis C, Nezarati MM, Stolte-Dijkstra I, Sharom FJ, Lu P, Phillips JA, Sweeney E, Robinson PN, Krawitz P, Yntema HG, Andrade DM, Brunner HG, Cole DE (2012) Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). Am J Med Genet Part A 158A(3):553–558. doi:10.1002/ajmg.a.35202

    Article  PubMed  Google Scholar 

  • Unger S, Mornet E, Mundlos S, Blaser S, Cole DE (2002) Severe cleidocranial dysplasia can mimic hypophosphatasia. Eur J Pediatr 161(11):623–626. doi:10.1007/s00431-002-0978-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. A.Y. Shuen and A. Gozdzik for critical review of the manuscript, and we acknowledge the enthusiastic support proffered by Professors M.P. Whyte and M Michael Cohen Jr. for the very first studies of this condition two decades ago. We also thank the affected families and numerous colleagues around the world for their various contributions.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. C. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cole, D.E.C., Thompson, M.D. (2015). Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_16

Download citation

Publish with us

Policies and ethics