Skip to main content

Development of Sound Representation in the Auditory Cortex of Tree Shrews (Tupaia Belangeri): A [14C]-2-Dg Study

  • Chapter
  • 78 Accesses

Part of the book series: NATO ASI Series ((ASID,volume 68))

Abstract

The [14C]-2-deoxyglucose (2-DG) technique was used to determine wether this technique allows to localize, map and differentiate effects of acoustically defined communicative or non-communicative sounds on the auditory cortex (AC) of adult and developing tree shrews (Tupaia belangeri). Discrete stimulus-specific patterns of increased 2-DG labelling were observed in auditory cortex of adult tupaias and imply a tonotopic organization. First at 18 days after birth (DAB) sound stimulation produced enhanced patterns of 2-DG uptake, however, quite different from those of adults. Labelling at that time was concentrated in rostral parts of the AC at places, where in adults higher frequencies are represented. At 39 DAB sound-induced labelling corresponded to that of adults. Different effects of communicative or non-communicative stimuli on functional activity of the auditory cortex were found shortly after onset of hearing, but were not as discrete as in adults, suggesting that epigenetic influences might be involved in shaping sound perception in tree shrews.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin L. M. and Moore D. R. (1975) ‘Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in the central nucleus of the neonatal cat’, J. Neurophysiol. 38, 1208–1216.

    PubMed  CAS  Google Scholar 

  • Aitkin L. M., Merzenich M. M., Irvine D. R. F., Clarey j. C. and Nelson J. E. (1986) ‘Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus)’, J. Comp. Neurol. 252, 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin L. (1990) The Auditory Cortex, Chapman and Hall, London, New York.

    Google Scholar 

  • Arjmand E., Harris D. and Dallos P. (1988) ‘Developmental changes in frequency mapping of the gerbil cochlea: Comparison of two cochlear locations’, Hear. Res. 32, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Benson B., Binz H. and Zimmermann E. (1992) ‘Vocalizations of infant and developing tree shrews (Tupaia belangeri)’, J. Mammalogy, 93(1), 106–119.

    Article  Google Scholar 

  • Binz H. and Zimmermann E. (1989) ‘The vocal repertoire of adult tree shrews (Tupaia belangeri)’, Behaviour 109, 142–162.

    Article  Google Scholar 

  • Binz H., Schobel G., Zimmermann E. and Rahmann H. (1990) ‘Changes in sound perception and metabolic brain activity in tree shrews (Tupaia belangeri) during ontogeny’ in N. Elsner and G. Roth (eds.), Brain, Perception, Cognition, Georg Thieme Verlag, Stuttgart, p. 161.

    Google Scholar 

  • Braitenberg V. and Schilz A. (1991) Anatomy of the Cortex, Springer-Verlag, Berlin. Brugge J. F. (1982) ‘Auditory cortical areas in primates’, in C. N. Woolsey (ed.) Cortical Sensory Organization, Vol. 3, Multiple Auditory Areas, Humana, Clifton, pp. 59–70.

    Google Scholar 

  • Burda H. and Branis M. (1988) ‘Postnatal development of the organ of Corti in the wild house mouse, laboratory mouse and their hybrid’, Hear. Res. 36, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Caird D., Scheich H. and Klinke R. (1991) ‘Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): Binaural 2-deoxyglucose patterns’, J. Comp. Physiol. A 168, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Casseday J., Diamond K. and Harting J. (1976) ‘Auditory pathway to the cortex of Tupaia glis’, J. Comp. Neurol. 166, 303–340.

    Article  PubMed  CAS  Google Scholar 

  • Casseday J. H. Jones D. R. and Diamond I. T. (1979) ‘Projections from cortex to tectum in the Tree shrew, Tupaia glis’ J. Comp. Neurol. 185, 253–292.

    Article  PubMed  CAS  Google Scholar 

  • Coleman J. R. (1990) ‘Development of auditory system structures’, in J. R. Coleman (ed.), Development of Sensory Systems in Mammals, John Wiley & Sons Inc., pp. 205–247.

    Google Scholar 

  • Colombo M., D’Amato M. R., Rodman H. R. and Gross C. G. (1990) ‘Auditory association cortex lesions impair auditory short-term memory in monkeys’, Science 247, 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Covey E., Jones D. R. and Casseday J. H. (1984) ‘Projections from the superior olivary complex to the cochlear nucleus in the tree shrew’, J. Comp. Neurol. 226, 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Cusick C. G., MacAvoy M. G. and Kaas J. H. (1985) ‘Interhemispheric connections of cortical sensory areas in tree shrews’, J. Comp. Neurol. 235, 111–128.

    Article  PubMed  CAS  Google Scholar 

  • Echteler S. M., Arjmand E. and Dallos P. (1989) ‘Developmental alterations in the frequency map of the mammalian cochlea’, Nature 341, 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Harris D. M. and Dallos P. (1984) ‘Ontogenetic changes in frequency mapping of a mammalian ear’, Science 225, 741–742.

    Article  PubMed  CAS  Google Scholar 

  • Heffner H. E., Ravizza R. J. and Masterton B. (1969) ‘Hearing in primitive mammals III, Tree shrew (Tupaia glis)’, J. Audit. Res. 9, 12–18.

    Google Scholar 

  • Heffner H. E. and Heffner R. S. (1989) ‘Effect of restricted cortical lesions on absolute thresholds and aphasia-like deficits in Japanese macaques’, Behav. Neurosci. 103/1, 158–169.

    Article  PubMed  CAS  Google Scholar 

  • Heil P. and Scheich H. (1986) ‘Effects of unilateral and bilateral cochlea removal on 2-deoxyglucaose patterns in the chick auditory system’, J. Comp. Neurol. 252, 279–301.

    Article  PubMed  CAS  Google Scholar 

  • Hertenstein B., Zimmermann E. and Rahmann H. (1987) ‘Zur Reproduktion und ontogenetischen Entwicklung von Spitzhörnchen (Tupaia belangeri)’, Z. Kölner Zoo 30, 119–133.

    Google Scholar 

  • Hose B., Langner G. and Scheich H. (1987) ‘Topographic representations of periodicities in the forebrain of the mynah bird: one map for pitch and rythm’, Brain Res. 422, 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Hungerbühler J.-P., Saunders J. C., Greenberg J. and Reivich M. (1981) ‘Functional neuroanatomy of the auditory cortex studied with (2–14C)Deoxyglucose’, Exp. Neurol. 71, 104–121.

    Article  PubMed  Google Scholar 

  • Jones D. R., Casseday J. H. and Diamond I. T. (1976) ‘Further study of parallel auditory pathways in the tree shrew, Tupaia glis’, Anat. Rec. 184, 438–439.

    Google Scholar 

  • Kaas J. H. (1987) ‘The organization of neocortex in mammals: Implications for theories of brain function’, Ann. Rev. Psychol. 38, 129–151.

    Article  CAS  Google Scholar 

  • Lippe W. R. and Rubel E. W. (1985) ‘Ontogeny of the tonotopic organization of brainstem auditory nuclei in the chicken: Implications for development of the place principle’, J. Comp. Neurol. 237, 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Melzer P. (1984) ‘The central auditory pathway of the gerbil Psammomys obesus: A deoxyglucose study’, Hearing Res. 15, 187–195.

    Article  CAS  Google Scholar 

  • Metherate R. and Ashe J. H. (1991) ‘Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors’, Brain Res. 559, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Müller C. M. and Leppelsack H.-J. (1985) ‘Feature extraction and tonotopic organization in the avian auditory forebrain’, Exp. Brain Res. 59, 587–599.

    Article  PubMed  Google Scholar 

  • Müller M. (1991a) ‘Frequency representation in the rat cochlea‘, Hearing Res. 51, 247–254.

    Article  Google Scholar 

  • Müller M. (1991b) ‘Developmental changes of frequency representation in the rat cochlea’, Hearing Res. 56, 1–7.

    Article  Google Scholar 

  • Nudo R. L. and Masterton R. B. (1984) ‘2-Deoxyglucose studies of stimulus coding in the brainstem auditory system of the cat’, in W. D. Neff (ed.) Contributions to Sensory Physiology, Vol. 8, Academic Press, London, Florida, pp. 79–97.

    Google Scholar 

  • Nudo R. L. and Masterton R. B. (1986) ‘Stimulation induced (14C)2 Deoxyglucose labelling of synaptic activity in the central auditory system‘, J. Comp. Neurol. 245, 553–565.

    Article  PubMed  CAS  Google Scholar 

  • Oliver D. L., Merzenich M. M., Roth G. L. Hall W. C. and Kaas J. H. (1976) ‘Tonotopic organization and connections of primary auditory cortex in the tree shrew, Tupaia glis’, Anat. Rec. 184, 491.

    Google Scholar 

  • Oliver D. L. and Hall W. C. (1978) ‘The medial geniculate body of the Tree shrew, Tupaia glis. II. Connections with the neocortex’, J. Comp. Neurol. 182, 459–494.

    Article  PubMed  CAS  Google Scholar 

  • Pickles J. O. (1988) An Introduction to the Physiology of Hearing, Academic Press, London.

    Google Scholar 

  • Reale R. A. and Imig T. J. (1980) ‘Tonotopic maps of auditory cortex in the cat’, J. Comp. Neurol. 192, 265–292.

    Article  PubMed  CAS  Google Scholar 

  • Riquimaroux H., Gaioni S. J. and Suga N. (1991) ‘Cortical computational maps control auditory perception’, Science 251, 565–568.

    Article  PubMed  CAS  Google Scholar 

  • Romand R. (1983) ‘Development of the cochlea’, in R. Romand (ed.) Development of Auditory and Vestibular Systems, Academic Press, New York, pp. 47–88.

    Google Scholar 

  • Romand R. (1987) ‘Tonotopic evolution during development’, Hearing Res. 28, 117–123.

    Article  CAS  Google Scholar 

  • Romand R. and Ehret G. (1990) ‘Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice’, Dev. Brain Res. 54, 221–234.

    Article  CAS  Google Scholar 

  • Romeis B. (1968) Mikroskopische Technik, R. Oldenbourg (ed.), R. Oldenbourg Verlag, München, Wien.

    Google Scholar 

  • Rose J. E. (1949) ‘The cellular structure of the auditory region of the cat’, J. Comp. Neurol. 91, 409–440.

    Article  PubMed  CAS  Google Scholar 

  • Rubel E. W. (1978) ‘Ontogeny of structure and function in the vertebrate auditory system’, in M. Jacobson (ed.), Handbook of Sensory Physiology IX, Development of Sensory Systems, Springer-Verlag, New York.

    Google Scholar 

  • Rubel E. W., Lippe W. R. and Ryals M. (1984) ‘Development of the place principle’, Ann. Otol. Rhinol. Laryngol. 93, 609–615.

    PubMed  CAS  Google Scholar 

  • Rübsamen R. and Schafer M. (1989) ‘Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi’, J. Comp. Physiol. A 167, 757–769.

    Google Scholar 

  • Ryan A. F., Woolf N. K. and Sharp F. R. (1982) ‘Tonotopic organization in the central auditory pathway of the Mongolian gerbil: A 2-Deoxyglucose study’, J. Comp. Neurol. 207, 369–380.

    Article  PubMed  CAS  Google Scholar 

  • Ryan A. F. and Woolf N.K. (1988) ‘Development of tonotopic representation in the mongolian gerbil: a 2-deoxyglucose study’, Dev. Brain Res. 41, 61–70.

    Article  Google Scholar 

  • Ryan A. F., Braverman S., Woolf N. K. and Axelsson G. A. (1989) ‘Auditory neural activity evoked by pure-tone stimulation as a function of intensity’, Brain Res. 483, 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Sally S. L. and Kelly J. B. (1988) ‘Organization of auditory cortex in the albino rat: sound frequency’, J. Neurophysiol. 59, 1627–1638.

    PubMed  CAS  Google Scholar 

  • Schafer M., Rübsamen R., Dörrscheidt G. J. and Knipschild M. (1992) ‘Setting complex tasks to single units in the avian forebrain. II: Do we really need natural stimuli to describe neuronal response characteristics?’, Hearing Res. 57, 231–244.

    Article  CAS  Google Scholar 

  • Scheich H. and Bonke B. A. (1981) ‘Tone versus FM induced patterns of excitation and suppression in 14-C-2-Deoxyglucose labelled auditory cortex of the guinea fowl’, Exp. Brain Res. 44, 445–449.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H. (1983) ‘Two columnar systems in the auditory neostriatum of the chick: Evidence from 2-Deoxyglucose’, Exp. Brain Res. 51, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H. (1985) ‘Auditory brain organization of birds and its constraints for the design of vocal repertoires’, Hölldobler and Lindauer (eds.), Fortschritte der Zoologie, Bd. 31, Experimental Behavioral Ecology, G. Fischer Verlag, Stuttgart, New York, pp. 195–209.

    Google Scholar 

  • Scheich H. (1991) ‘Auditory cortex: comparative aspects of maps and plasticity’, Current Opinion in Neurobiol. 1, 236–247.

    Article  CAS  Google Scholar 

  • SchObel G. (1989) ‘Verhaltensphysiologische Untersuchungen zur Erfassung des Hörvermögens bei Spitzhörnchen Tupaia belangeri während der Ontogenese’, Thesis, University of Stuttart-Hohenheim.

    Google Scholar 

  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) ‘The (14C)-Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anaesthetized albino rat’, J. Neurochem. 28, 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sousa-Pinto A. (1973) ‘The structure of the first auditory cortex in the cat. I. Light microscopic observations on its organization’, Arch. Ital. Biol. 111, 112–137.

    PubMed  CAS  Google Scholar 

  • Spatz W. B. (1966) ‘Zur Ontogenese der Bulla tympanica von Tupaia glis Diard 1820 (Prosimiae, Tupaiiformes)’, Folia Primatol. 4, 26–50.

    Article  PubMed  CAS  Google Scholar 

  • Starck D. (1978) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage I, Springer-Verlag, Berlin, Heidelberg, New York, p. 189.

    Google Scholar 

  • Steffen H., Simonis C., Thomas H., Tillein J., and Scheich H. (1988) ‘Auditory cortex: multiple fields, their architectonics and connections in the mongolian gerbil’, in J. Syka and R. B. Masterton (eds.), Auditory Pathway, Plenum Press, New York, pp. 223–228.

    Google Scholar 

  • Steinschneider M., Arezzo J. C. and Vaugham H. G. (1990) ‘Tonotopic features of speechevoked activity in primate auditory cortex’, Brain Res. 519, 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Suga N. (1982) ‘Functional organization of the auditory cortex: representation beyond tonotopy in the bat’, in C. N. Woolsey (ed.) Cortical Sensory Organization, Vol. 3, Multiple Auditory Areas, Humana, Clifton, pp. 157–218.

    Google Scholar 

  • Tigges J. and Shantha T. R. (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis), The Williams & Wilkins Company, Baltimore.

    Google Scholar 

  • Uno H., Ohno Y., Yamada T. and Miyamoto K. (1991) ‘Neural coding of speech sound in the telencephalic auditory area of the mynah bird’, J. Comp. Physiol. A 169, 231–239.

    Article  Google Scholar 

  • Villa A. E. P. (1990) ‘Physiological differentiation within the auditory part of the thalamic reticular nucleus of the cat’, Brain Res. Rev. 15, 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Webster W. R., Serviere J., Martin R. and Brown M. (1985) ‘Uncrossed and crossed inhibition in the inferior colliculus of the cat: A combined 2-deoxyglucose and electrophysiological study’, J. Neurosci. 5, 1820–1832.

    PubMed  CAS  Google Scholar 

  • Webster W. R. and Martin R.L. (1991) ‘The development of frequency representation in the inferior colliculus of the kitten’, Hearing Res. 55, 70–80.

    Article  CAS  Google Scholar 

  • Woody C. D., Gruen E., Melamed O. and Chizhevsky V. (1991) ‘Patterns of unit activity in the rostral thalamus of cats related to short-latency discrimination between different auditory stimuli’, J. Neurosci. 11(1), 48–58.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Binz, H., Zimmermann, E., Rahmann, H. (1992). Development of Sound Representation in the Auditory Cortex of Tree Shrews (Tupaia Belangeri): A [14C]-2-Dg Study. In: Gonzalez-Lima, F., Finkenstädt, T., Scheich, H. (eds) Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions. NATO ASI Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2712-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2712-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1947-4

  • Online ISBN: 978-94-011-2712-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics