Growing different field crops under high salinity levels and utilization of genetically engineered Rhizobia and Azotobacter salt drought tolerant strains

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The purpose of this work is to test different cultivars from fodder beet, oil rape seeds and barley if they can resist successfully severe conditions of high salinity with the production of economic yield. In spite of the high saline water used in irrigation for different fodder beet cultivars, Rota cultivar gave a yield for the roots and leaves of about 140 tons acre-’ with the weight of some roots about 45-50kg plant-’. In addition, the fresh leaves can be used for feeding cattle, sheep, and goats during spring months.

On the other hand, the winter growing Brassica napus oil seed rape requires less water than summer oil crops. Rape seed oil is used for in cooking and margarine production. Var. AD 201 gave the highest yield about 1.34 tons acre-’, Wester cv. only gave 0.715 tons from seeds. Barley: some cultivars can resist salinity and give higher yield from kernels and hay, about 1.4 tons of kernels and 2.9 hay acre-’ or 1.6 tons of kernels and 3.05 of hay acre-’ under high nitrogen and phosphorus applications.

The introduction of new genetically engineered Rhizobia and Azotobacter, salt, high temperature and drought tolerant strains suits the new cultivated crops at Sinai Governorate. These strains are suitable to the environment in Sinai where conditions are severe. They are also highly efficient in nitrogen fixation as they reduce fertilization costs, soil pollutants and improve the soil physical properties. The above mentioned strains (tolerating 10-20% NaC1) are originally produced by isolation of the responsible genes from Bacillus sp. strain (tolerating 30% NaCI and 55°C) which is in turn being isolated from the soil of Aswan Governorate. The genes were introduced to the most efficient nitrogen fixing strains of Rhizobia and Azotobacter. The most suitable strains were isolated and introduced in the cultivated areas in Sinai with the new introduced crops. The results of the yield and the nitrogen contents in plants and the soil are significantly higher than those of the control areas where these strains are not applied and are fertilized with other kinds of fertilizers.