Skip to main content

The Ocean as a Source of Atmospheric Sulfur Compounds

  • Chapter
Book cover The Role of Air-Sea Exchange in Geochemical Cycling

Part of the book series: NATO ASI Series ((ASIC,volume 185))

Abstract

The impact of human activity on the global atmospheric sulfur cycle is easily seen in densely inhabited, industrialized regions: the degradation of visibility by haze, the acidity of atmospheric precipitation, and the damage to forest vegetation are among the more obvious symptoms of this impact. Atmospheric transport propagates these effects well beyond their source regions. The human perturbation of the atmospheric sulfur cycle results largely from the emission of sulfur dioxide (S02) from fossil fuel burning. A number of recent papers have reviewed these emissions and presented a detailed source allocation (e.g. Cullis and Hirschler, 1980; Möller, 1984). The estimates for man-made sulfur emissions fall into a relatively narrow range: about 2.5 ± 0.3 Tmol yr-1 (Tmol: 1 Teramole = 1012 mol = 32 x 1012 g).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R. G., C. S. Tocher, and J. McLachlan. 1966. ‘Occurrence of dimethyl-propiothetin in marine phytoplankton’. J. Fish. Res. Bd. Can. 23:357–364.

    Article  Google Scholar 

  • Adams, D. F., S. O. Farwell, E. Robinson, M. R. Pack, and W. L. Bames- berger. 1981. ‘Biogenic sulfur source strengths’. Environ. Sci. Technol 15:1493–1498.

    Article  Google Scholar 

  • Almgren, T., and I. Hagstrsm. 1974. ‘The oxidation rate of sulphide in sea water’. Water Res. 8:395–400.

    Article  Google Scholar 

  • Anderson, J. W. 1980. ‘Assimilation of inorganic sulfate into cysteine’. In The Biochemistry of Plants, Vol. 5 ( P.K. Stumpf and E.E. Conn, eds.) New York: Academic Press, 203–223.

    Google Scholar 

  • Andreae, M. O. 1979. ‘Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element’. Limnol. Oceanogr. 24:440–452.

    Article  Google Scholar 

  • Andreae, M. O. 1980. ‘Dimethylsulfoxide in marine and fresh waters’. Limnol. Oceanogr. 25:1054–1063.

    Article  Google Scholar 

  • Andreae, M. O. 1982. ‘Marine aerosol chemistry at Cape Grim, Tasmania and Townsville, Queensland’. J. Geophys. Res. 87:8875–8885.

    Article  Google Scholar 

  • Andreae, M. O. 1984. ‘Atmospheric effects of microbial mats’. In Microbial Mats: Stromatolites(Y. Cohen, R.W. Castenholz and H.O. Halverson, eds.) New York: Alan R. Liss, 455–466.

    Google Scholar 

  • Andreae, M. O. 1985a. ‘The emission of sulfur to the remote atmosphere’. In The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere( J.N. Galloway, R.J. Charlson, M.O. Andreae and H. Rodhe, eds.) Dordrecht: Reidel, 5–25.

    Google Scholar 

  • Andreae, M. O. 1985b. ‘Dimethylsulfide in the water column and the sediment pore waters of the Peru upwelling area’. Limnol. Oceanogr. 30:1208–1218.

    Google Scholar 

  • Andreae, M. O., and W. R. Barnard. 1984. ‘The marine chemistry of dimethylsulfide’. Marine Chem. 14:267–279.

    Article  Google Scholar 

  • Andreae, M. O., and H. Raemdonck, 1983. ‘Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view’. Science 221:744–747.

    Article  Google Scholar 

  • Andreae, M. O., W. R. Barnard, and J. M. Ammons. 1983. ’The biological production of dimethylsulfide in the ocean and its role in the global atmospheric sulfur budget’. Ecol. Bull. 35:167–177.

    Google Scholar 

  • Andreae, M. O., R. J. Ferek, F. Bermond, K. P. Byrd, R. T. Engstrom, S. Hardin, P. D. Houmere, F. LeMarrec, H. Raemdonck, and R. B. Chatfield. 1985a. ‘Dimethyl sulfide in the marine atmosphere’. J. Geophys. Res., in press.

    Google Scholar 

  • Andreae, M. O., R. J. Charlson, F. Bruynseels, H. Storms, R. E. Van Grieken, and U. Maenhaut. 1985b. ‘Salts, silicates, and sulfates: internal mixture in marine aerosols’. Science, submitted.

    Google Scholar 

  • Atkinson, R., J. N. Pitts, Jr., and S. M. Aschmann. 1984. ‘Tropospheric reactions of dimethyl sulfide with N03 and OH radicals’. J. Phys. Chem 88:1584–1587.

    Article  Google Scholar 

  • Barnard, W.R., M. O. Andreae, W. E. Watkins, H. Bingeaer, and H. U. Georgii. 1982. ‘The flux of dimethylsulfide from the oceans to the atmosphere’. J. Geophys. Res. 87:8787–8793.

    Article  Google Scholar 

  • Barnard, W. R., M. O. Andreae, and R. L. Iverson. 1984. ‘Dimethylsulfide and Phaeocystis poucheti in the southeastern Bering Sea’. Cont. Shelf Res. 3:103–113.

    Article  Google Scholar 

  • Baulch, D. L., R. A. Cox, P. J. Crutzen, R. F. Hampson, J. A. Kerr, J. Troe, and R. T. Watson. 1982. ‘Evaluated kinetics and photochemical data for atmospheric chemistry’. J. Phys. Chem. Ref. Data, 11:327–496.

    Article  Google Scholar 

  • Bingemer, H. 1984. ‘Dimethylsulfid in Ozean und mariner Atmosphäre—Experimentelle Untersuchung einer natttrlichen Schwefelquelle für die Atmosphäre’. Ph.D. Dissertation, J.W. Goethe Universität, Frankfurt am Main.

    Google Scholar 

  • Blanchard, D. C. 1983. ‘The production, distribution, and bacterial enrichment of the sea-salt aerosol’. In Air-Sea Exchange of Gases and Particles( P.S. Liss and W.G.N. Slinn, eds.) Boston: Reidel, 407–454.

    Google Scholar 

  • Blanchard, D. C., A. H. Woodcock, and R. J. Cipriano. 1984. ‘The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii’. Tellus 36B:118–125.

    Google Scholar 

  • Bonsang, B., B. C. Nguyen, A. Gaudry, and G. Lambert. 1980. ‘Sulfate enrichment in marine aerosols owing to biogenic gaseous sulfur compounds’. J. Geophys. Res. 85:7410–7416.

    Google Scholar 

  • Broecker, W. S., and T.-H. Peng. 1974. ‘Gas exchange rates between air and sea’. Tellus 26:21–35.

    Article  Google Scholar 

  • Brown, A. D., and J. R. Simpson. 1972. ‘Water relations of sugar- tolerant yeasts: the role of intracellular polyols’. J. Gen. Microbiol. 72:589–591.

    Google Scholar 

  • Cantoni, G. L., and D. G. Anderson. 1956. ‘Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa’. J. Biol. Chem 222:171–177.

    Google Scholar 

  • Challenger, F., and M. I. Simpson. 1948. ‘Studies on biological methyla- tion. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3:1591’1597.

    Article  Google Scholar 

  • Chatfield, R. B., and P. J. Crutzen. 1984. ‘Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors’. J. Geophys. Res 89:7111–7132.

    Article  Google Scholar 

  • Chen, K. Y., and J. C. Morris. 1972. ‘Kinetics of oxidation of aqueous sulfide by 02’. Environ. Sci. Technol. 6:529–537.

    Article  Google Scholar 

  • Church, T. M., J. N. Galloway, T. D. Jickells, and A. H. Knap. 1982. ‘The chemistry of western Atlantic precipitation at the mid-Atlantic coast and on Bermuda’. J. Geophys. Res. 87:11,013–11,018.

    Google Scholar 

  • Cline, J. D., and T. S. Bates. 1983. ‘Dimethyl sulfide in the equatorial Pacific Ocean: a natural source of sulfur to the atmosphere’. Geophys. Res. Lett. 10:949–952.

    Article  Google Scholar 

  • Cox, R. A., and D. Sheppard. 1980. ‘Reactions of OH radicals with gaseous sulphur compounds’. Nature 284:330–331.

    Article  Google Scholar 

  • Craigie, J. S., J. McLachlan, R. G. Ackman, and C. S. Tocher. 1967. ‘Photosynthesis in algae. III. Distribution of soluble carbohydrates and dimethyl-’-propiothetin in marine unicellular chlorophyceae and prasinophyceae’. Can. J. Bot. 45:1327’1334.

    Article  Google Scholar 

  • Cullis, C. F. and M. M. Hirschler. 1980. ‘Atmospheric sulfur: natural and man-made sources’. Atmos. Environ. 14:1263–1278.

    Article  Google Scholar 

  • Delmas, R., and J. Servant. 1982. ‘The origins of sulfur compounds in the atmosphere of a zone of high productivity (Gulf of Guinea)’. J. Geophys. Res 87:11,019–11,026.

    Article  Google Scholar 

  • Dickson, D. M., R. G. Wyn Jones, and J. Davenport. 1980. ‘Steady state osmotic adaptation in Ulva lactuca’. Planta 150:158–165.

    Article  Google Scholar 

  • Dickson, D. M., R. G. Wyn Jones, and J. Davenport. 1982. ‘Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes’. Planta 155:409–415.

    Article  Google Scholar 

  • Duce, R. A., F. Maclntyre, and B. Bonsang. 1982. ‘Enrichment of sulfate in maritime aerosols’ (Discussion). Atmos. Environ 16:2025–2034.

    Article  Google Scholar 

  • Ehrlich, P. R., A. H. Ehrlich, and J. P. Holdren. 1977. Ecoscience. Population, resources, environment. San Francisco: Freeman, 1051 p.

    Google Scholar 

  • Ferek, R. J., and M. O. Andreae. 1983. ‘The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean off Peru’. Geophys. Res. Lett. 10:393–396.

    Article  Google Scholar 

  • Ferek, R. J., and M. O. Andreae. 1984. ‘Photochemical production of carbonyl sulfide in marine surface waters’. Nature 307:148–150.

    Article  Google Scholar 

  • Ferek, R. J., R. B. Chatfield, and M. O. Andreae. 1985. ‘Vertical dis-tribution of dimethylsulfide in the marine atmosphere: implications for the atmospheric sulfur cycle’. Nature, submitted.

    Google Scholar 

  • Galloway, J. N. 1985. ‘The deposition of sulfur and nitrogen from the remote atmosphere’. In The Blogeochemlcal Cycles of Sulfur and Nitrogen in the Remote Atmosphere(J.N. Galloway, R.J. Charlson, M. O. Andreae and H. Rodhe, eds.) Dordrecht: Reidel, 143–175.

    Google Scholar 

  • Galloway, J. N., G. E. Likens, V. C. Keene, and J. M. Miller. 1982. ‘The composition of precipitation in remote areas of the world’. J. Geophys. Res 87:8771–8786.

    Article  Google Scholar 

  • Galloway, J. N., A. H. Knap, and T. M. Church. 1983. ‘The composition of western Atlantic precipitation using shipboard collectors’. J. Geophys. Res. 88:10,859–10,864.

    Article  Google Scholar 

  • Garland, J. A. 1981. ‘Enrichment of sulphate in maritime aerosols’. Atmos. Environ. 15:787–791.

    Article  Google Scholar 

  • Gidel, L. T. 1984. ‘The role of clouds in micro and macro-scale transport of atmospheric constituents’. In Gas-Liquid Chemistry of Natural Waters (L. Newman, ed.) Upton, N.Y.: Brookhaven Natl. Lab., (6)1–8.

    Google Scholar 

  • Giovanelli, J., S. H. Mudd, and A. H. Datko. 1980. ‘Sulfur aminoacids in plants’. In The Biochemistry of Plants, Vol. 5 ( P.K. Stumpf and E.E. Conn, eds.) New York: Academic Press, 453–505.

    Google Scholar 

  • Graedel, T. E. 1979. ‘Reduced sulfur emission from the open oceans’. Geophys. Res. Lett. 6:329–331.

    Article  Google Scholar 

  • Granroth, B., and T. Hattula. 1976. ‘Formation of dimethyl sulfide by brackish water algae and its possible implication for the flavor of Baltic herring’. Finn. Chem. Lett., 148–150.

    Google Scholar 

  • Grosjean, D. 1984. ‘Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol’. Environ. Sci. Technol. 18:460–468.

    Article  Google Scholar 

  • Haas, P. 1935. ‘The liberation of methyl sulfide in seaweed’, Blochenu J. 29:1297–1299.

    Google Scholar 

  • Hatakeyama, S., M. Okuda, and H. Akimoto. 1982. ‘Formation of sulfur dioxide and methane sulfonic acid in the photooxidation of dimethyl sulfide in the air’. Geophys. Res. Lett. 9:583–586.

    Article  Google Scholar 

  • Herrmann, J., and W. Jaeschke. 1984. ‘Measurements of H2S and S02 over the Atlantic Ocean’. J. Atmos. Chem. 1:111–123.

    Article  Google Scholar 

  • Ivanov, M. V., and J. R. Freney. 1983. ‘The global biogeochemical sulfur cycle’. New York: Wiley, 470 p.

    Google Scholar 

  • Jenkins, W. J. 1982. ‘Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems’. Nature 300:246–248.

    Article  Google Scholar 

  • Johnson, J. E. 1981. ‘The lifetime of carbonyl sulfide in the troposphere’. Geophys. Res. Lett 8:938–940.

    Article  Google Scholar 

  • Koblentz-Mishke, 0. J., V. V. Volkovinsky, and J. G. Kabanova. 1970. ‘Plankton primary production of the world ocean’. In Scientific Ex-ploration of the South Pacific( W.S. Wooster, ed.) Washington, D.C.: Natl. Acad. Sci., 183–193.

    Google Scholar 

  • Liss, P. S. 1983. ‘Gas transfer: experiments and geochemical implications’. In Air-Sea Exchange of Gases and Particles( P.S. Liss and W.G.N. Slinn, eds.) Boston: Reidel, 241–298.

    Google Scholar 

  • Logan, J. A., M. B. McElroy, S. C. Wofsy, and M. J. Prather. 1979. ‘Oxidation of CS2 and COS: sources for atmospheric S02’. Nature 281:185–188.

    Article  Google Scholar 

  • Lovelock, J. E. 1974. ‘CS2 and the natural sulphur cycle’. Nature 248:625–626.

    Google Scholar 

  • Maenhaut, W., M. Darzi, and J. W. Winchester. 1981. ‘Seawater and non- seawater aerosol components in the marine atmosphere of Samoa’. J. Geophys. Res 86:3187–3193.

    Article  Google Scholar 

  • Maenhaut, W., H. Raemdonck, A. Selen, R. Van Grieken, and J. W. Winchester. 1983. ‘Characterization of the atmospheric aerosol over the eastern equatorial Pacific’. J. Geophys. Res. 88:5353–5364.

    Article  Google Scholar 

  • Maroulis, P. J., A. L. Torres, A. B. Goldberg, and A. R. Bandy. 1980. ‘Atmospheric S02 measurements on project GAMETAG’. J. Geophys. Res., 85:7345–7349.

    Article  Google Scholar 

  • McDonald, R. L., C. K. Unni, and R. A. Duce. 1982. ‘Estimation of atmospheric sea salt dry deposition: wind speed and particle size dependence’. J. Geophys. Res. 87:1246–1250.

    Article  Google Scholar 

  • McElroy, M. B., S. C. Wofsy, and N. D. Sze. 1980. ‘Photochemical sources for atmospheric H2S’. Atmos. Environ. 14:159–163.

    Article  Google Scholar 

  • Müller, D. 1984. ‘Estimation of the global man-made sulphur emission’. Atmos. Environ. 18:19–27.

    Article  Google Scholar 

  • Nguyen, B. C., B. Bonsang, and A. Gaudry. 1983. ‘The role of the ocean in the global atmospheric sulfur cycle’. J. Geophys. Res 88:10,903–10,914.

    Google Scholar 

  • Nguyen, B. C., C. Bergeret, and G. Lambert. 1984. ‘Exchange rates of dimethyl sulfide between ocean and atmosphere’. In Gas Transfer at Water Surfaces( W. Brunsaert and G.H. Jirka, eds.) Dordrecht: Reidel, 539–545.

    Google Scholar 

  • Peng, T.-H., W. S. Broecker, G. G. Mathieu, and Y.-H. Li. 1979. ‘Radon evasion rates in the Atlantic and Pacific Oceans as determined during the Geosecs program’. J. Geophys. Res. 84:2471–2486.

    Article  Google Scholar 

  • Petrenchuk, O. P. 1980. ‘On the budget of sea salts and sulfur in the atmosphere’. J. Geophys. Res. 85:7439–7444.

    Article  Google Scholar 

  • Raemdonck, H., W. Maenhaut, and M. O. Andreae. 1985. ‘Chemistry of the marine aerosol over the tropical and equatorial Pacific’. J. Geophys. Res., in press.

    Google Scholar 

  • Rasmussen, R. A., M. A. K. Khalil, and S. D. Hoyt. 1982. ‘The oceanic source of carbonyl sulfide (OCS)’. Atmos. Environ 16:1591’1594.

    Article  Google Scholar 

  • Rodhe, H., and I. Isaksen. 1980. ‘Global distribution of sulfur compounds in the troposphere estimated in a height/latitude transport model’. J. Geophys. Res. 85:7401–7409.

    Article  Google Scholar 

  • Saltzman, E. S., D. L. Savoie, R. G. Zika, and J. M. Prospero. 1983. ‘Methane sulfonic acid in the marine atmosphere’. J. Geophys. Res. 88:10,897–10,902.

    Article  Google Scholar 

  • Saltzman, E. S., L. T. Gidel, R. G. Zika, P. J. Milne, J. M. Prospero, D. L. Savoie, and W. J. Cooper. 1984. ‘Aerosol chemistry of methane sulfonic acid’. In Gas-Liquid Chemistry of Natural Waters (L. Newman, ed.) Upton, N.Y.: Brookhaven Natl. Lab., (53)1–8.

    Google Scholar 

  • Savoie, D. L. 1984. ‘Nitrate and non-sea-salt sulfate aerosols over major regions of the world ocean: concentrations, sources, and fluxes’. Ph.D. Dissertation, University of Miami, Florida.

    Google Scholar 

  • Shulenberger, E., and J. L. Reid. 1981. ‘The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered’. Deep-Sea Res. 28:901–919.

    Article  Google Scholar 

  • Sivelu, S., and V. Sundman. 1975. ‘Demonstration of Thiobacillus-type bacteria, which utilize methyl sulphides’. Arch. Microbiol 103:303–304.

    Article  Google Scholar 

  • Slatt, B. J., D. F. S. Natusch, J. M. Prospero, and D. L. Savoie. 1978. ‘Hydrogen sulfide in the atmosphere of the northern equatorial Atlantic Ocean and its relation to the global sulfur cycle’. Atmos. Environ. 12:981–991.

    Article  Google Scholar 

  • Smethie, W. M., Jr., T. Takahashi, D. W. Chipman, and J. R. Ledwell. 1985. ‘Gas exchange and C02 flux in the tropical Atlantic Ocean determined from 222Rn and pC02 measurements’. J. Geophys. Res. 90:7005– 7022.

    Article  Google Scholar 

  • Steudler, P. A., and B. J. Peterson. 1984. ‘Contribution of the sulfur from salt marshes to the global sulfur cycle’. Nature, in press.

    Google Scholar 

  • Tocher, C. S., R. G. Ackman, and J. McLachlan. 1966. ‘The identification of dimethyl-6-propiothetin in the algae Syracosphaera carterae and Ulva lactuca’. Can. J. Blochem. 44:519–522.

    Article  Google Scholar 

  • Turner, S. M., and P. S. Liss. 1985a. ‘Measurements of various sulphur gases in a coastal marine environment’. J. Atmos. Chem 2:223’232.

    Article  Google Scholar 

  • Turner, S. M., and P. S. Liss. 1985b. ‘Measurements of sulphur gases in coastal marine environments’. Searex Newsletter, January 1985, 12–17.

    Google Scholar 

  • Vairavamurthy, A., M. O. Andreae, and R. L. Iverson. 1985. ‘Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations’. Limnol. Oceanogr 30:59–70.

    Article  Google Scholar 

  • Varhelyi, G., and G. Gravenhorst. 1983. ‘Production rate of airborne seasalt sulfur deduced from chemical analysis of marine aerosols and precipitation’. J. Geophys. Res. 88:6737–6751.

    Article  Google Scholar 

  • Von Damm, K. L. 1983. ‘Chemistry of submarine hydrothermal solutions at 21° North, East Pacific Rise, and Guaymas Basin, Gulf of California’. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, 241 p.

    Google Scholar 

  • Wakeham, S. G., B. L. Howes, and J. W. H. Dacey. 1984. ‘Dimethylsulfide in a coastal stratified salt pond’. Nature 310:770–772.

    Article  Google Scholar 

  • White, R. H. 1982. ‘Analysis of dimethyl sulfonium compounds in marine algae’. J. Marine Res. 40529–536.

    Google Scholar 

  • Wilson, L. G., R. A. Bressan, and P. Filner. 1978. ‘Light-dependent emission of hydrogen sulfide from plants’. Plant Physiology 61:184–189.

    Article  Google Scholar 

  • Winer, A. M., R. Atkinson, and J. N. Pitts, Jr. 1984. ‘Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic compounds’. Science 224:156–159.

    Article  Google Scholar 

  • Winner, W. E., C. L. Smith, G. W. Koch, H. A. Mooney, J. D. Bewley, and H. R. Krouse. 1981. ‘Rates of emission of H2S from plants and patterns of stable sulphur isotope fractionation’. Nature 289:672’673.

    Article  Google Scholar 

  • Zinder, S. H., and T. D. Brock. 1978. ‘Production of methane and carbon dioxide from methane thiol and dimethyl sulphide by anaerobic lake sediments’. Nature 273:226–228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Andreae, M.O. (1986). The Ocean as a Source of Atmospheric Sulfur Compounds. In: Buat-Ménard, P. (eds) The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI Series, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4738-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4738-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8606-6

  • Online ISBN: 978-94-009-4738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics