Skip to main content

Antiviral Agents: Structural Basis of Action and Rational Design

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Lipinski’s rule states that, in general, an orally active drug should meet at least three of the following criteria: (i) Not more than five hydrogen bond donors (nitrogen or oxygen atoms with one or more hydrogen atoms), (ii) not more than ten hydrogen bond acceptors (nitrogen or oxygen atoms), (iii) a molecular mass <500 daltons, and (iv) an octanol-water partition coefficient log P not greater than five.

  2. 2.

    Also especially recommended for further reading are references [1, 3, 18, 35] listed above.

Abbreviations

AIDS:

Acquired immune deficiency syndrome

CoMFA:

Comparative molecular field analysis

CTD:

C-terminal domain

HBV:

Hepatitis B virus

HCMV:

Human cytomegalovirus

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HR:

Heptad repeat

HSV:

Herpes simplex virus

HTS:

High-throughput screening

LBVS:

Ligand-based virtual screening

mRNA:

Messenger RNA

Neu5Ac:

N-acetylneuraminic acid

NMR:

Nuclear magnetic resonance

NNRTIs:

Nonnucleoside RT inhibitors

NTD:

N-terminal domain

PDB:

Protein Data Bank

RSV:

Respiratory syncytial virus

RT:

Reverse transcriptase

SBVS:

Structure-based virtual screening

THF:

Tetrahydrofuran

VZV:

Varicella-zoster virus

References

  1. De Clercq E (2004) Antivirals and antiviral strategies. Nat Rev Microbiol 2:704–720

    Article  PubMed  Google Scholar 

  2. De Clercq E (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 33:307–320

    Article  PubMed  Google Scholar 

  3. Menéndez-Arias L (2010) Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 85:210–213

    Article  PubMed  Google Scholar 

  4. Menéndez-Arias L (2009) Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 1:1137–1165

    Article  PubMed  Google Scholar 

  5. Hamre D, Brownlee KA, Donovick R (1951) Studies on the chemotherapy of vaccinia virus. II The activity of some thiosemicarbazones. J Immunol 67:305–312

    PubMed  CAS  Google Scholar 

  6. Bauer DJ, St. Vincent L, Kempe CH, Downie AW (1963) Prophylactic treatment of smallpox contacts with N-methylisatin β-thiosemicarbazone (compound 33T57, Marboran). Lancet 2:494–496

    Article  PubMed  CAS  Google Scholar 

  7. Prusoff WH (1959) Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim Biophys Acta 32:295–296

    Article  PubMed  CAS  Google Scholar 

  8. Jordan AM, Roughley SD (2009) Drug discovery chemistry: a primer for the non-specialist. Drug Discov Today 14:731–744

    Article  PubMed  Google Scholar 

  9. De Clercq E, Holý A (2005) Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 4:928–940

    Article  PubMed  Google Scholar 

  10. Menéndez-Arias L (2008) Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 134:124–146

    Article  PubMed  Google Scholar 

  11. Menéndez-Arias L, Betancor G, Matamoros T (2011) HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 92:139–149

    Article  PubMed  Google Scholar 

  12. De Corte BL (2005) From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepin-2(1H)-one (TIBO) to etravirine (TMC125): Fifteen years of research on non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem 48:1689–1696

    Article  PubMed  Google Scholar 

  13. Janssen PAJ, Lewi PJ, Arnold E et al (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[-[(1E)-2-cyanoethenyl]-2, 6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem 48:1901–1909

    Article  PubMed  CAS  Google Scholar 

  14. Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134:235–249

    Article  PubMed  CAS  Google Scholar 

  15. Watkins WJ, Ray AS, Chong LS (2010) HCV NS5B polymerase inhibitors. Curr Opin Drug Discov Devel 13:441–465

    PubMed  CAS  Google Scholar 

  16. Mayhoub AS (2012) Hepatitis C RNA-dependent RNA polymerase inhibitors: a review of structure-activity and resistance relationships; different scaffolds and mutations. Bioorg Med Chem 20:3150–3161

    Article  PubMed  CAS  Google Scholar 

  17. Sofia MJ, Bao D, Chang W et al (2010) Discovery of a β-D-2′-deoxy-2′-α-fluoro-2′-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J Med Chem 53:7202–7218

    Article  PubMed  CAS  Google Scholar 

  18. De Clercq E (2007) The design of drugs for HIV and HCV. Nat Rev Drug Discov 6:1001–1018

    Article  PubMed  Google Scholar 

  19. Gao M, Nettles RE, Belema M et al (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465:96–100

    Article  PubMed  CAS  Google Scholar 

  20. Lemm JA, O’Boyle D 2nd, Liu M et al (2010) Identification of hepatitis C virus NS5A inhibitors. J Virol 84:482–491

    Article  PubMed  CAS  Google Scholar 

  21. Coelmont L, Hanoulle X, Chatterji U et al (2010) DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A. PLoS One 5:e13687

    Article  PubMed  Google Scholar 

  22. Hazuda D, Iwamoto M, Wenning L (2008) Emerging pharmacology: inhibitors of human immunodeficiency virus integration. Annu Rev Pharmacol Toxicol 49:377–394

    Article  Google Scholar 

  23. Serrao E, Odde S, Ramkumar K, Neamati N (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6:25

    Article  PubMed  Google Scholar 

  24. Cherepanov P, Maertens GN, Hare S (2011) Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21:249–256

    Article  PubMed  CAS  Google Scholar 

  25. Njoroge FG, Chen KX, Shih NY, Piwinski JJ (2008) Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res 41:50–59

    Article  PubMed  CAS  Google Scholar 

  26. Kwong AD, Kauffman RS, Hurter P, Mueller P (2011) Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29:993–1003

    Article  PubMed  CAS  Google Scholar 

  27. Hacker HJ, Deres K, Mildenberger M, Schröder CH (2003) Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion. Biochem Pharmacol 66:2273–2279

    Article  PubMed  CAS  Google Scholar 

  28. Stray SJ, Bourne CR, Punna S et al (2005) A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. Proc Natl Acad Sci USA 102:8138–8143

    Article  PubMed  CAS  Google Scholar 

  29. Neira JL (2009) The capsid protein of human immunodeficiency virus: designing inhibitors of capsid assembly. FEBS J 276:6110–6117

    Article  PubMed  CAS  Google Scholar 

  30. Prevelige PE Jr (2011) New approaches for antiviral targeting of HIV assembly. J Mol Biol 410:634–640

    Article  PubMed  CAS  Google Scholar 

  31. Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409

    Article  PubMed  CAS  Google Scholar 

  32. Menéndez-Arias L, Esté JA (2004) HIV-resistance to viral entry inhibitors. Curr Pharm Des 10:1845–1860

    Article  PubMed  Google Scholar 

  33. Madani N, Schön A, Princiotto AM et al (2008) Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16:1689–1701

    Article  PubMed  CAS  Google Scholar 

  34. Curreli F, Choudhury S, Pyatkin I et al (2012) Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1. J Med Chem 55:4764–4775

    Article  PubMed  CAS  Google Scholar 

  35. Colman PM (2009) New antivirals and drug resistance. Annu Rev Biochem 78:95–118

    Article  PubMed  CAS  Google Scholar 

  36. Roymans D, De Bondt HL, Arnoult E et al (2010) Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc Natl Acad Sci USA 107:308–313

    Article  PubMed  CAS  Google Scholar 

  37. Chen GS, Chern J-W (2007) Computer-aided drug design. In: Hwang Z (ed) Drug discovery research: new frontiers in the post-genomic era. Wiley, Hoboken, pp 89–107

    Google Scholar 

  38. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502

    Article  PubMed  CAS  Google Scholar 

  39. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed  CAS  Google Scholar 

  40. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  41. Horvath D (2011) Pharmacophore-based virtual screening. Methods Mol Biol 672:261–298

    Article  PubMed  CAS  Google Scholar 

  42. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  PubMed  CAS  Google Scholar 

  43. Guido RV, Oliva G, Andricopulo AD (2008) Virtual screening and its integration with modern drug design technologies. Curr Med Chem 15:37–46

    Article  PubMed  CAS  Google Scholar 

  44. Sun C, Petros AM, Hajduk PJ (2011) Fragment-based lead discovery: challenges and opportunities. J Comput Aided Mol Des 25:607–610

    Article  PubMed  CAS  Google Scholar 

  45. Abad-Zapatero C, Perišić O, Wass J et al (2010) Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Drug Discov Today 15:804–811

    Article  PubMed  CAS  Google Scholar 

  46. Koes DR, Camacho CJ (2012) PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res 40:W387–W392

    Article  PubMed  CAS  Google Scholar 

  47. Hall DR, Ngan CH, Zerbe BS, Kozakov D, Vajda S (2012) Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. J Chem Inf Model 52:199–209

    Article  PubMed  CAS  Google Scholar 

  48. Rodríguez-Barrios F, Gago F (2004) Chemometrical identification of mutations in HIV-1 reverse transcriptase conferring resistance or enhanced sensitivity to arylsulfonylbenzonitriles. J Am Chem Soc 126:2718–2719

    Article  PubMed  Google Scholar 

  49. Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303:35–40

    Article  PubMed  CAS  Google Scholar 

  50. Von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974

    Article  Google Scholar 

  51. Collins PJ, Haire LF, Lin YP et al (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453:1258–1261

    Article  PubMed  CAS  Google Scholar 

  52. Roberts NA, Martin JA, Kinchington D et al (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    Article  PubMed  CAS  Google Scholar 

  53. Ghosh AK, Anderson DD, Weber IT, Mitsuya H (2012) Enhancing protein backbone binding – a fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed Engl 51:1778–1802

    Article  PubMed  CAS  Google Scholar 

  54. Patick AK (2006) Rhinovirus chemotherapy. Antiviral Res 71:391–396

    Article  PubMed  CAS  Google Scholar 

  55. Ledford RM, Collett MS, Pevear DC (2005) Insights into the genetic basis for natural phenotypic resistance of human rhinoviruses to pleconaril. Antiviral Res 68:135–138

    Article  PubMed  CAS  Google Scholar 

  56. Thibaut HJ, De Palma AM, Neyts J (2012) Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol 83:185–192

    Article  PubMed  CAS  Google Scholar 

  57. Oberste MS, Moore D, Anderson B et al (2009) In vitro antiviral activity of V-073 against polioviruses. Antimicrob Agents Chemother 53:4501–4503

    Article  PubMed  CAS  Google Scholar 

  58. Kistler AL, Webster DR, Rouskin S et al (2007) Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 4:40

    Article  PubMed  Google Scholar 

  59. Zlotnick A, Ceres P, Singh S, Johnson JM (2002) A small molecule inhibits and misdirects assembly of hepatitis B virus capsids. J Virol 76:4848–4854

    Article  PubMed  CAS  Google Scholar 

  60. Bourne CR, Finn MG, Zlotnick A (2006) Global structural changes in hepatitis B virus capsids induced by the assembly effector HAP1. J Virol 80:11055–11061

    Article  PubMed  CAS  Google Scholar 

  61. Stray SJ, Zlotnick A (2006) BAY 41–4109 has multiple effects on hepatitis B virus capsid assembly. J Mol Recognit 19:542–548

    Article  PubMed  CAS  Google Scholar 

  62. Adamson CS, Freed EO (2008) Recent progress in antiretrovirals – lessons from resistance. Drug Discov Today 13:424–432

    Article  PubMed  CAS  Google Scholar 

  63. Blair WS, Cao J, Fok-Seang J et al (2009) New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation. Antimicrob Agents Chemother 53:5080–5087

    Article  PubMed  CAS  Google Scholar 

  64. Pornillos O, Ganser-Pornillos BK, Kelly BN et al (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–1292

    Article  PubMed  Google Scholar 

  65. Bocanegra R, Rodríguez-Huete A, Fuertes MA et al (2012) Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res 169:388–410

    Article  PubMed  CAS  Google Scholar 

  66. Zhang H, Curreli F, Zhang X et al (2011) Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain. Retrovirology 8:28

    Article  PubMed  CAS  Google Scholar 

  67. Shi J, Zhou J, Shah VB et al (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85:542–549

    Article  PubMed  CAS  Google Scholar 

  68. Blair WS, Pickford C, Irving SL et al (2010) HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 6:e1001220

    Article  PubMed  Google Scholar 

  69. Lemke CT, Titolo S, von Schwedler U et al (2012) Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein. J Virol 86:6643–6655

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Kazmierski WM (ed) (2011) Antiviral drugs: from basic discovery through clinical trials. Wiley, Hoboken

    Google Scholar 

  • LaFemina RL (ed) (2009) Antiviral research: strategies in antiviral drug discovery. ASM Press, Washington

    Google Scholar 

  • Young DC (2009) Computational drug design: a guide for computational and medicinal chemists. Wiley, Hoboken

    Book  Google Scholar 

  • A collection of reviews written by Dr. Eric De Clercq and published in Medicinal Research Reviews between 2008 and 2011 provide a nice summary on the design and development of many antiviral drugs, from a historical perspective and providing relevant chemical structures. References for these articles are

    Google Scholar 

  • De Clercq E (2008) The discovery of antiviral agents: ten different compounds, ten different stories. Med Res Rev 28:929–953

    Article  PubMed  Google Scholar 

  • De Clercq E (2009) Antiviral drug discovery: ten more compounds, and ten more stories (part B). Med Res Rev 29:571–610

    Article  PubMed  Google Scholar 

  • De Clercq E (2009) Another ten stories in antiviral drug discovery (part C): “old” and “new” antivirals, strategies, and perspectives. Med Res Rev 29:611–645

    Article  PubMed  Google Scholar 

  • De Clercq E (2010) Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 30:667–707

    PubMed  Google Scholar 

  • De Clercq E (2011) The next ten stories on antiviral drug discovery (part E): advents, advances, and adventures. Med Res Rev 31:118–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work at CBMSO is supported in part by grants of the Spanish Ministry of Economy and Competitiveness (BIO2010/15542) and the General Directorate for Pharmacy and Medical Products (Ministry of Health, Social Services and Equality) (EC11-025), and an institutional grant from the Fundación Ramón Areces. Continued support to F.G. from the Spanish Comisión Interministerial de Ciencia y Tecnología (SAF2009-13914-C02-02) and Comunidad de Madrid (S-BIO/0214/2006 and S2010-BMD-2457) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Menéndez-Arias or Federico Gago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Menéndez-Arias, L., Gago, F. (2013). Antiviral Agents: Structural Basis of Action and Rational Design. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_20

Download citation

Publish with us

Policies and ethics