Skip to main content

Extending the Parameterization of Gravity Waves into the Thermosphere and Modeling Their Effects

  • Chapter
Book cover Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Vertical coupling by gravity waves (GWs) between the lower atmosphere and thermosphere is studied with a general circulation model (GCM) extending from the tropopause to the upper atmosphere. A newly developed nonlinear spectral GW parameterization, which accounts for wave propagation in the highly dissipative thermosphere, has been implemented into the Coupled Middle Atmosphere-Thermosphere-2 (CMAT2) GCM. In addition to the nonlinear saturation, the extended scheme considers wave dissipation suitable for the thermosphere-ionosphere, such as molecular viscosity and thermal conduction, ion drag, eddy diffusivity, and radiative damping. The results of simulations for June solstice show that the dynamical and thermal effects of GWs are strong and cannot be neglected in the thermosphere. At F region heights, GW momentum deposition is comparable to the ion drag and GW-induced heating/cooling competes with the high-latitude Joule heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, M. J., & Dunkerton, T. J. (1999). A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the Atmospheric Sciences, 56, 4167–4182.

    Article  Google Scholar 

  • Banks, P. M., & Kockarts, G. (1973). Aeronomy, part A. New York: Elsevier.

    Google Scholar 

  • Beagley, S. R., de Grandepre, J., Koshyk, J. N., McFarlane, N. A., & Shepherd, T. G. (1997). Radiative-dynamical climatology of the first generation Canadian middle atmosphere model. Atmosphere-Ocean, 35, 293–331.

    Article  Google Scholar 

  • Becker, E. (2004). Direct heating rates associated with gravity wave saturation. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 683–696.

    Article  Google Scholar 

  • Boville, B. A., & Randel, W. J. (1992). Equatorial waves in a stratospheric gcm: Effects of vertical resolution. Journal of the Atmospheric Sciences, 49, 785–801.

    Article  Google Scholar 

  • Djuth, F. T., Sulzer, M. P., Gonzales, S. A., Mathews, J. D., Elder, J. H., & Walterscheid, R. L. (2004). A continuum of gravity waves in the Arecibo thermosphere? Journal of Geophysical Research, 31, L16801. doi:10.1029/2003GL019376.

    Article  Google Scholar 

  • Dobbin, A. L. (2005). Modelling studies of possible coupling mechanisms between the upper and the middle atmosphere. Ph.D. thesis, University College London.

    Google Scholar 

  • Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., & Shepherd, T. G. (2002). Extended Canadian middle atmosphere model: zonal-mean climatology and physical parameterizations. Journal of Geophysical Research, 107, 4087. doi:10.1029/2001JD000479.

    Article  Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003. doi:10.1029/2001RG000106.

    Article  Google Scholar 

  • Fritts, D. C., & Lu, W. (1993). Spectral estimates of gravity wave energy and momentum fluxes, ii, parameterization of wave forcing and variability. Journal of the Atmospheric Sciences, 50, 3695–3713.

    Article  Google Scholar 

  • Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere. Amsterdam: Elsevier. 243 pp.

    Google Scholar 

  • Harris, M. J. (2001). A new coupled middle atmosphere and thermosphere general circulation model: studies of dynamics, energetics and photochemical coupling in the middle and upper atmosphere. Ph.D. thesis, University of London.

    Google Scholar 

  • Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., & Cocqurez, P. (2008). Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. part ii: Results from vorcore campaign in Antarctica. Journal of the Atmospheric Sciences, 65, 3056–3070.

    Article  Google Scholar 

  • Hines, C. O. (1960). Internal gravity waves at ionospheric heights. Canadian Journal of Physics, 38, 1441–1481.

    Article  Google Scholar 

  • Holton, J. R. (1982). The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. Journal of the Atmospheric Sciences, 39, 791–799.

    Article  Google Scholar 

  • Hunsucker, R. (1982). Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Reviews of Geophysics, 20, 293–315.

    Article  Google Scholar 

  • Klostermeyer, J. (1972). Influence of viscosity, thermal conduction, and ion drag on the propagation of atmospheric gravity waves in the thermosphere. Zeitschrift für Geophysik, 38, 881–890.

    Google Scholar 

  • Lindzen, R. S. (1981). Turbulence and stress owing to gravity waves and tidal breakdown. Journal of Geophysical Research, 86, 9707–9714.

    Article  Google Scholar 

  • Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., Kinnison, D., Marsh, D. R., Smith, A. K., Richter, J., Sassi, F., & Oberheide, J. (2010). Thermosphere extension of the whole atmosphere community climate model. Journal of Geophysical Research, 115, A12302. doi:10.1029/2010JA015586.

    Article  Google Scholar 

  • Livneh, D. J., Seker, I., Djuth, F. T., & Mathews, J. D. (2007). Continuous quasiperiodic thermospheric waves over Arecibo. Journal of Geophysical Research, 112, A07313. doi:10.1029/2006JA012225.

    Article  Google Scholar 

  • Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. Journal of Climate, 19, 3863–3881.

    Article  Google Scholar 

  • Matsuno, T. (1982). A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. Journal of the Meteorological Society of Japan, 60, 215–226.

    Google Scholar 

  • Medvedev, A. S., & Klaassen, G. P. (1995). Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. Journal of Geophysical Research, 100, 25841–25853.

    Article  Google Scholar 

  • Medvedev, A. S., & Klaassen, G. P. (2000). Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: Basic formulation and sensitivity tests. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1015–1033.

    Article  Google Scholar 

  • Medvedev, A. S., & Klaassen, G. P. (2003). Thermal effects of saturating gravity waves in the atmosphere. Journal of Geophysical Research, 108(D2), 4040. doi:10.1029/2002JD002504.

    Article  Google Scholar 

  • Medvedev, A. S., Klaassen, G. P., & Beagley, S. R. (1998). On the role of an anisotropic gravity wave spectrum in maintaining the circulation of the middle atmosphere. Geophysical Research Letters, 25, 509–512.

    Article  Google Scholar 

  • Munro (1950). Traveling disturbances in the ionosphere. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 202(1069), 208–223.

    Article  Google Scholar 

  • Oliver, W. L., Otsuka, Y., Sato, M., Takami, T., & Fukao, S. (1997). A climatology of f region gravity wave propagation over the middle and upper atmosphere radar. Journal of Geophysical Research, 102, 14499–14512.

    Article  Google Scholar 

  • Richmond, A. D., Ridley, E. C., & Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19, 601–604.

    Article  Google Scholar 

  • Roble, R. G., Ridley, E. C., & Richmond, A. D. (1988). A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 15(12), 1325–1328.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19, 3903–3931.

    Article  Google Scholar 

  • Vadas, S. L., & Fritts, D. C. (2005). Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. Journal of Geophysical Research, 110, D15103. doi:10.1029/2004JD005574.

    Article  Google Scholar 

  • Warner, C. D., & McIntyre, M. E. (2001). An ultrasimple spectral parameterization for nonorographic gravity waves. Journal of the Atmospheric Sciences, 58, 1837–1857.

    Article  Google Scholar 

  • Weinstock, J. (1982). Nonlinear theory of gravity waves: momentum deposition, generalized Rayleigh friction, and diffusion. Journal of the Atmospheric Sciences, 39, 1698–1710.

    Article  Google Scholar 

  • Yiğit, E. (2009). Modelling atmospheric vertical coupling: role of gravity wave dissipation in the upper atmosphere. Ph.D. thesis, University College London Doctoral Thesis.

    Google Scholar 

  • Yiğit, E., & Medvedev, A. S. (2009). Heating and cooling of the thermosphere by internal gravity waves. Geophysical Research Letters, 36, L14807. doi:10.1029/2009GL038507.

    Article  Google Scholar 

  • Yiğit, E., & Medvedev, A. S. (2010). Internal gravity waves in the thermosphere during low and high solar activity: simulation study. Journal of Geophysical Research, 115, A00G02. doi:10.1029/2009JA015106.

    Article  Google Scholar 

  • Yiğit, E., Aylward, A. D., & Medvedev, A. S. (2008). Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. Journal of Geophysical Research, 113, D19106. doi:10.1029/2008JD010135.

    Article  Google Scholar 

  • Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., & Harris, M. J. (2009). Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. Journal of Geophysical Research, 114, D07101. doi:10.1029/2008JD011132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Yiğit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yiğit, E., Medvedev, A.S. (2013). Extending the Parameterization of Gravity Waves into the Thermosphere and Modeling Their Effects. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_25

Download citation

Publish with us

Policies and ethics