Skip to main content

Advancing Nanostructured Porous Si-Based Optical Transducers for Label Free Bacteria Detection

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

Optical label-free porous Si-based biosensors for rapid bacteria detection are introduced. The biosensors are designed to directly capture the target bacteria cells onto their surface with no prior sample processing (such as cell lysis). Two types of nanostructured optical transducers based on oxidized porous Si (PSiO2) Fabry-Pérot thin films are synthesized and used to construct the biosensors. In the first system, we graft specific monoclonal antibodies (immunoglobulin G’s) onto a neat electrochemically-machined PSiO2 surface, based on well-established silanization chemistry. The second biosensor class consists of a PSiO2/hydrogel hybrid. The hydrogel, polyacrylamide, is synthesized in situ within the nanostructured PSiO2 host and conjugated with specific monoclonal antibodies to provide the active component of the biosensor. Exposure of these modified-surfaces to the target bacteria results in “direct-cell-capture” onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations, in the range of 103–105 cell/ml, within minutes. The sensing performance of the two different platforms, in terms of their stability in aqueous media and sensitivity, are compared and discussed. This preliminary study suggests that biosensors based on PSiO2/hydrogel hybrid outperform the neat PSiO2 system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez, S. D., Schwartz, M. P., Migliori, B., Rang, C. U., Chao, L., & Sailor, M. J. (2007). Using a porous silicon photonic crystal for bacterial cell-based biosensing. Physica Status Solidi a–Applications and Materials Science, 204, 1439–1443.

    Article  CAS  Google Scholar 

  • Archer, M., Christophersen, M., Fauchet, P. M., Persaud, D., & Hirschman, K. D. (2004). Electrical porous silicon microarray for DNA hybridization detection. Micro- and Nanosystems, 782, 385–391.

    Google Scholar 

  • Bonanno, L. M., & Delouise, L. A. (2007). Steric crowding effects on target detection in an affinity biosensor. Langmuir, 23, 5817–5823.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, L. M., & Delouise, L. A. (2009a) Design of a hybrid amine functionalized polyacrylamide hydrogel-porous silicon optical sensor. Proceedings of SPIE, 7167, 71670F1-11.

    Google Scholar 

  • Bonanno, L. M., & Delouise, L. A. (2009b). Optical detection of polyacrylamide swelling behavior in a porous silicon sensor. Materials Research Society Symposium. Proceeding., 1133, 1133-AA01-05.

    Google Scholar 

  • Burnham, M. R., Turner, J. N., Szarowski, D., & Martin, D. L. (2006). Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials, 27, 5883–5891.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S., Horner, S. R., Fauchet, P. M., & Miller, B. L. (2001). Identification of gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society, 123(47), 11797–11798.

    Article  PubMed  CAS  Google Scholar 

  • Dancil, K.-P. S., Greiner, D. P., & Sailor, M. J. (1999). A porous silicon optical biosensor: Detection of reversible ­binding of IgG to a protein A-modified surface. Journal of the American Chemical Society, 121, 7925–7930.

    Article  CAS  Google Scholar 

  • D’Auria, S., de Champdore, M., Aurilia, V., Parracino, A., Staiano, M., Vitale, A., Rossi, M., Rea, I., Rotiroti, L., Rossi, A. M., Borini, S., Rendina, I., & de Stefano, L. (2006). Nanostructured silicon-based biosensors for the selective identification of analytes of social interest. Journal of Physics. Condensed Matter, 18, S2019–S2028.

    Article  Google Scholar 

  • de Leon, S. B., Sa’Ar, A., Oren, R., Spira, M. E., & Yitzchaik, S. (2004). Neurons culturing and biophotonic sensing using porous silicon. Applied Physics Letters, 84, 4361–4363.

    Article  Google Scholar 

  • Delouise, L. A., Fauchet, P. M., Miller, B. L., & Pentland, A. A. (2005a). Hydrogel-supported optical-microcavity sensors. Advanced Materials, 17, 2199–2203.

    Article  CAS  Google Scholar 

  • Delouise, L. A., Kou, P. M., & Miller, B. L. (2005b). Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Analytical Chemistry, 77, 3222–3230.

    Article  PubMed  CAS  Google Scholar 

  • Dudak, F. C., & Boyaci, I. H. (2007). Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International, 40, 803–807.

    Article  CAS  Google Scholar 

  • Dudak, F. C., & Boyaci, I. H. (2009). Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnology Journal, 4, 1003–1011.

    Article  PubMed  CAS  Google Scholar 

  • Jane, A., Dronov, R., Hodges, A., & Voelcker, N. H. (2009). Porous silicon biosensors on the advance. Trends in Biotechnology, 27, 230–239.

    Article  PubMed  CAS  Google Scholar 

  • Janshoff, A., Dancil, K. P. S., Steinem, C., Greiner, D. P., LIN, V. S. Y., Gurtner, C., Motesharei, K., Sailor, M. J., & Ghadiri, M. R. (1998). Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. Journal of the American Chemical Society, 120, 12108–12116.

    Article  CAS  Google Scholar 

  • Kilian, K. A., Boecking, T., & Gooding, J. J. (2009). The importance of surface chemistry in mesoporous materials: Lessons from porous silicon biosensors. Chemical Communications, 630–640.

    Google Scholar 

  • Li, Y. Y., Cunin, F., Link, J. R., Gao, T., Betts, R. E., Reiver, S. H., Chin, V., Bhatia, S. N., & Sailor, M. J. (2003). Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science, 299, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. Y., Kollengode, V. S., & Sailor, M. J. (2005). Porous silicon/polymer nanocomposite photonic crystals by microdroplet patterning. Advanced Materials, 17, 1249–1251.

    Article  CAS  Google Scholar 

  • Massad-Ivanir, N., Shtenberg, G., Zeidman, T., & Segal, E. (2010). Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Advanced Functional Materials, 20, 2269–2277.

    Article  CAS  Google Scholar 

  • Massad-Ivanir, N., Shtenberg, G., Tzur, A., Krepker, A. M., & Segal, E. (2011). Engineering nanostructured porous SiO2 surfaces for bacteria detection via “direct cell capture”. Analytical Chemistry, 83, 3282–3289.

    PubMed  CAS  Google Scholar 

  • Pacholski, C., Sartor, M., Sailor, M. J., Cunin, F., & Miskelly, G. M. (2005). Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy. Journal of the American Chemical Society, 127, 11636–11645.

    Article  PubMed  CAS  Google Scholar 

  • Pacholski, C., Yu, C., Miskelly, G. M., Godin, D., & Sailor, M. J. (2006). Reflective interferometric Fourier transform spectroscopy: A self-compensating label-free immunosensor using double-layers of porous SiO2. Journal of the American Chemical Society, 128, 4250–4252.

    Article  PubMed  CAS  Google Scholar 

  • Perelman, L. A., Moore, T., Singelyn, J., Sailor, M. J., & Segal, E. (2010). Preparation and characterization of a pH- and thermally responsive poly(N-isopropylacrylamide-co-acrylic acid)/porous SiO2 hybrid. Advanced Functional Materials, 20, 826–833.

    Article  CAS  Google Scholar 

  • Radke, S. M., & Alocilja, E. C. (2005). A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal, 5, 744–750.

    Article  CAS  Google Scholar 

  • Sailor, M. J., & Link, J. R. (2005). “Smart dust”: Nanostructured devices in a grain of sand. Chemical Communications, 1375–1383.

    Google Scholar 

  • Schwartz, M. P., Alvarez, S. D., & Sailor, M. J. (2007). Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein a to immunoglobulins derived from different species. Analytical Chemistry, 79, 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Sciacca, B., Secret, E., Pace, S., Gonzalez, P., Geobaldo, F., Quignard, F., & Cunin, F. (2011). Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. Journal of Materials Chemistry, 21, 2294–2302.

    Article  CAS  Google Scholar 

  • Segal, E., Perelman, L. A., Cunin, F., di Renzo, F., Devoisselle, J. M., Li, Y. Y., & Sailor, M. J. (2007). Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates. Advanced Functional Materials, 17, 1153–1162.

    Article  CAS  Google Scholar 

  • Skottrup, P. D., Nicolaisen, M., & Justesen, A. F. (2008). Towards on-site pathogen detection using antibody-based sensors. Biosensors and Bioelectronics, 24, 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Somasundaran, P. (2006). Encyclopedia of surface and colloid science. Boca Raton: CRC Press.

    Google Scholar 

  • Stewart, M. P., & Buriak, J. M. (2000). Chemical and biological applications of porous silicon technology. Advanced Materials, 12, 859–869.

    Article  CAS  Google Scholar 

  • Sundararaj, S., Guo, A., Habibi-Nazhad, B., Rouani, M., Stothard, P., Ellison, M., & Wishart, D. S. (2004). The CyberCell Database (CCDB): A comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic Acids Research, 32, D293–D295.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. D., Ladd, J., Homola, J., & Jiang, S. (2008). Surface plasmon resonance (SPR) sensors for the detection of bacterial pathogens. In Z. Mohammed, E. Souna, & T. Anthony (Eds.), Principles of bacterial detection: Biosensors, recognition receptors and microsystems. New York: Springer.

    Google Scholar 

  • Wu, J., & Sailor, M. (2009). Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Advanced Functional Materials, 19, 733–741.

    Article  CAS  Google Scholar 

  • Xia, B., Xiao, S. J., Guo, D. J., Wang, J., Chao, M., Liu, H. B., Pei, J., Chen, Y. Q., Tang, Y. C., & Liu, J. N. (2006). Biofunctionalisation of porous silicon (PS) surfaces by using homobifunctional cross-linkers. Journal of Materials Chemistry, 16, 570–578.

    Article  CAS  Google Scholar 

  • Yoon, M. S., Ahn, K. H., Cheung, R. W., Sohn, H., Link, J. R., Cunin, F., & Sailor, M. J. (2003). Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chemical Communications, 680–681.

    Google Scholar 

  • Zhang, D., & Alocilja, E. C. (2008). Characterization of nanoporous silicon-based DNA biosensor for the detection of salmonella enteritidis. IEEE Sensors Journal, 8, 775–780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Marie Curie European Reintegration Grant, The Israel Science Foundation (grant No. 1118/08). E.S gratefully acknowledges the generous financial support of the Technion and the Russell Berrie Nanotechnology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Massad-Ivanir, N., Shtenberg, G., Segal, E. (2012). Advancing Nanostructured Porous Si-Based Optical Transducers for Label Free Bacteria Detection. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_4

Download citation

Publish with us

Policies and ethics