Skip to main content

Metal-Mediated Base Pairs in Nucleic Acids with Purine- and Pyrimidine-Derived Nucleosides

  • Chapter
  • First Online:
Interplay between Metal Ions and Nucleic Acids

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 10))

Abstract

Metal-mediated base pairs are transition metal complexes formed from complementary nucleosides within nucleic acid double helices. Instead of relying on hydrogen bonds, they are stabilized by coordinative bonds. The nucleosides acting as ligands do not necessarily have to be artificial. In fact, several examples are known of naturally occurring nucleobases (e.g., thymine, cytosine) capable of forming stable metal-mediated base pairs that are highly selective towards certain metal ions. This chapter provides a comprehensive overview of metal-mediated base pairs formed from natural nucleosides or from closely related artificial nucleosides that are pyrimidine or purine derivatives. It addresses the different strategies that lead to the development of these base pairs. The article focuses on structural models for metal-mediated base pairs, their experimental characterization within a nucleic acid, and on their possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Müller, Metallomics 2010, 2, 318–327.

    Article  PubMed  Google Scholar 

  2. G. L. Eichhorn, Y. A. Shin, J. Am. Chem. Soc. 1968, 90, 7323–7328.

    Article  CAS  PubMed  Google Scholar 

  3. G. L. Eichhorn, J. J. Butzow, P. Clark, E. Tarien, Biopolymers 1967, 5, 283–296.

    Article  CAS  PubMed  Google Scholar 

  4. R. M. Izatt, J. J. Christensen, J. H. Rytting, Chem. Rev. 1971, 71, 439–481.

    Article  CAS  PubMed  Google Scholar 

  5. R. H. Jensen, N. Davidson, Biopolymers 1966, 4, 17–32.

    Article  CAS  Google Scholar 

  6. S. Katz, Nature 1962, 194, 569.

    Article  CAS  Google Scholar 

  7. J. Müller, Eur. J. Inorg. Chem. 2008, 3749–3763.

    Google Scholar 

  8. G. H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 6226–6236.

    Article  CAS  Google Scholar 

  9. K. Tanaka, M. Shionoya, Coord. Chem. Rev. 2007, 251, 2732–2742.

    Article  CAS  Google Scholar 

  10. S. Atwell, E. Meggers, G. Spraggon, P. G. Schultz, J. Am. Chem. Soc. 2001, 123, 12364–12367.

    Article  CAS  PubMed  Google Scholar 

  11. S. Johannsen, N. Megger, D. Böhme, R. K. O. Sigel, J. Müller, Nat. Chem. 2010, 2, 229–234.

    Article  CAS  PubMed  Google Scholar 

  12. G. H. Clever, M. Shionoya, Chapter 10 of this book.

    Google Scholar 

  13. J. S. Lee, L. J. P. Latimer, R. S. Reid, Biochem. Cell Biol. 1993, 71, 162–168.

    Article  CAS  PubMed  Google Scholar 

  14. P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, J. S. Lee, J. Mol. Biol. 1999, 294, 477–485.

    Article  CAS  PubMed  Google Scholar 

  15. B. Lippert, Prog. Inorg. Chem. 2005, 54, 385–447.

    Article  CAS  Google Scholar 

  16. M. Fuentes-Cabrera, B. G. Sumpter, J. E. Šponer, J. Šponer, L. Petit, J. C. Wells, J. Phys. Chem. B 2007, 111, 870–879.

    Article  CAS  PubMed  Google Scholar 

  17. S. S. Alexandre, J. M. Soler, L. Seijo, F. Zamora, Phys. Rev. B 2006, 73, 205112.

    Article  Google Scholar 

  18. E. C. Fusch, B. Lippert, J. Am. Chem. Soc. 1994, 116, 7204–7209.

    Article  CAS  Google Scholar 

  19. S. L. Labiuk, L. T. J. Delbaere, J. S. Lee, J. Biol. Inorg. Chem. 2003, 8, 715–720.

    Article  CAS  PubMed  Google Scholar 

  20. A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu, Phys. Rev. Lett. 2001, 86, 3670–3673.

    Article  CAS  PubMed  Google Scholar 

  21. C.-Z. Li, Y.-T. Long, H.-B. Kraatz, J. S. Lee, J. Phys. Chem. B 2003, 107, 2291–2296.

    Article  CAS  Google Scholar 

  22. M. J. Dinsmore, J. S. Lee, J. Electroanal. Chem. 2008, 617, 71–77.

    Article  CAS  Google Scholar 

  23. X. Li, Y. Zhou, T. C. Sutherland, B. Baker, J. S. Lee, H.-B. Kraatz, Anal. Chem. 2005, 77, 5766–5769.

    Article  CAS  PubMed  Google Scholar 

  24. S. D. Wettig, D. O. Wood, P. Aich, J. S. Lee, J. Inorg. Biochem. 2005, 99, 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  25. K. Mizoguchi, S. Tanaka, T. Ogawa, N. Shiobara, H. Sakamoto, Phys. Rev. B 2005, 72, 0033106.

    Article  Google Scholar 

  26. F. Moreno-Herrero, P. Herrero, F. Moreno, J. Colchero, C. Gómez-Navarro, J. Gómez-Herrero, A. M. Baró, Nanotechnology 2003, 14, 128–133.

    Article  CAS  Google Scholar 

  27. B. Liu, A. J. Bard, C.-Z. Li, H.-B. Kraatz, J. Phys. Chem. B 2005, 109, 5193–5198.

    Article  CAS  PubMed  Google Scholar 

  28. B. Q. Spring, R. M. Clegg, J. Phys. Chem. B 2007, 111, 10040–10052.

    Article  CAS  PubMed  Google Scholar 

  29. G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391–2402.

    Article  CAS  Google Scholar 

  30. S. Katz, J. Am. Chem. Soc. 1952, 74, 2238–2245.

    Article  CAS  Google Scholar 

  31. C. A. Thomas, J. Am. Chem. Soc. 1954, 76, 6032–6034.

    Article  CAS  Google Scholar 

  32. S. Katz, Biochim. Biophys. Acta 1963, 68, 240–253.

    Article  CAS  PubMed  Google Scholar 

  33. L. D. Kosturko, C. Folzer, R. F. Stewart, Biochemistry 1974, 13, 3949–3952.

    Article  CAS  PubMed  Google Scholar 

  34. Z. Kuklenyik, L. G. Marzilli, Inorg. Chem. 1996, 35, 5654–5662.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172–2173.

    Article  CAS  PubMed  Google Scholar 

  36. H. Torigoe, A. Ono, T. Kozasa, Chem. Eur. J. 2010, 16, 13218–13225.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc. 2007, 129, 244–245.

    Article  CAS  PubMed  Google Scholar 

  38. A. Ono, H. Togashi, Angew. Chem. Int. Ed. 2004, 43, 4300–4302.

    Article  CAS  Google Scholar 

  39. R.-M. Kong, X.-B. Zhang, L.-L. Zhang, X.-Y. Jin, S.-Y. Huan, G.-L. Shen, R.-Q. Yu, Chem. Commun. 2009, 5633–5635.

    Google Scholar 

  40. C.-X. Tang, Y. Zhao, X.-W. He, X.-B. Yin, Chem. Commun. 2010, 46, 9022–9024.

    Article  CAS  Google Scholar 

  41. Y. Miyake, A. Ono, Tetrahedron Lett. 2005, 46, 2441–2443.

    Article  CAS  Google Scholar 

  42. E. Ennifar, P. Walter, P. Dumas, Nucleic Acids Res. 2003, 31, 2671–2682.

    Article  CAS  PubMed  Google Scholar 

  43. S. Johannsen, S. Paulus, N. Düpre, J. Müller, R. K. O. Sigel, J. Inorg. Biochem. 2008, 102, 1141–1151.

    Article  CAS  PubMed  Google Scholar 

  44. T. Yamane, N. Davidson, Biochim. Biophys. Acta 1962, 55, 609–621.

    Article  CAS  PubMed  Google Scholar 

  45. L. G. Marzilli, T. J. Kistenmacher, M. Rossi, J. Am. Chem. Soc. 1977, 99, 2797–2798.

    Article  CAS  PubMed  Google Scholar 

  46. T. J. Kistenmacher, M. Rossi, L. G. Marzilli, Inorg. Chem. 1979, 18, 240–244.

    Article  CAS  Google Scholar 

  47. A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Commun. 2008, 4825–4827.

    Google Scholar 

  48. H. Torigoe, Y. Miyakawa, A. Ono, T. Kozasa, Nucleosides Nucleotides Nucleic Acids 2011, 30, 149–167.

    Article  CAS  PubMed  Google Scholar 

  49. D. A. Megger, J. Müller, Nucleosides Nucleotides Nucleic Acids 2010, 29, 27–38.

    Article  CAS  PubMed  Google Scholar 

  50. H. Urata, E. Yamaguchi, Y. Nakamura, S.-i. Wada, Chem. Commun. 2011, 47, 941–943.

    Article  CAS  Google Scholar 

  51. T. Ono, K. Yoshida, Y. Saotome, R. Sakabe, I. Okamoto, A. Ono, Chem. Commun. 2011, 47, 1542–1544.

    Article  CAS  Google Scholar 

  52. D. A. Megger, C. Fonseca Guerra, F. M. Bickelhaupt, J. Müller, J. Inorg. Biochem. 2011, 105, 1398–1404.

    Google Scholar 

  53. Y. Wen, F. Xing, S. He, S. Song, L. Wang, Y. Long, D. Li, C. Fan, Chem. Commun. 2010, 46, 2596–2598.

    Article  CAS  Google Scholar 

  54. I. Okamoto, K. Iwamoto, Y. Watanabe, Y. Miyake, A. Ono, Angew. Chem. Int. Ed. 2009, 48, 1648–1651.

    Article  CAS  Google Scholar 

  55. K. Aoki, W. Saenger, Acta Cryst. 1984, C40, 775–778.

    CAS  Google Scholar 

  56. B. Lippert, Coord. Chem. Rev. 2000, 200–202, 487–516.

    Article  Google Scholar 

  57. J. Ruiz, M. D. Villa, V. Rodríguez, N. Cutillas, C. Vicente, G. López, D. Bautista, Inorg. Chem. 2007, 46, 5448–5449.

    Article  CAS  PubMed  Google Scholar 

  58. C. Switzer, D. Shin, Chem. Commun. 2005, 1342–1344.

    Google Scholar 

  59. D. Shin, C. Switzer, Chem. Commun. 2007, 4401–4403.

    Google Scholar 

  60. F.-A. Polonius, J. Müller, Angew. Chem. Int. Ed. 2007, 46, 5602–5604.

    Article  CAS  Google Scholar 

  61. T. Ihara, T. Ishii, N. Araki, A. W. Wilson, A. Jyo, J. Am. Chem. Soc. 2009, 131, 3826–3827.

    Article  CAS  PubMed  Google Scholar 

  62. M. G. Santangelo, P. M. Antoni, B. Spingler, G. Jeschke, ChemPhysChem 2010, 11, 599–606.

    Article  CAS  PubMed  Google Scholar 

  63. F. Seela, T. Wenzel, Helv. Chim. Acta 1994, 77, 1485–1499.

    Article  CAS  Google Scholar 

  64. D. A. Megger, C. Fonseca Guerra, J. Hoffmann, B. Brutschy, F. M. Bickelhaupt, J. Müller, Chem. Eur. J. 2011, 17, 6533–6544.

    Google Scholar 

  65. F. Seela, T. Wenzel, Helv. Chim. Acta 1995, 78, 833–846.

    Article  CAS  Google Scholar 

  66. L. E. Kapinos, A. Holý, J. Günter, H. Sigel, Inorg. Chem. 2001, 40, 2500–2508.

    Article  CAS  PubMed  Google Scholar 

  67. C. Switzer, S. Sinha, P. H. Kim, B. D. Heuberger, Angew. Chem. Int. Ed. 2005, 44, 1529–1532.

    Article  CAS  Google Scholar 

  68. B. D. Heuberger, D. Shin, C. Switzer, Org. Lett. 2008, 10, 1091–1094.

    Article  CAS  PubMed  Google Scholar 

  69. H. Urata, E. Yamaguchi, T. Funai, Y. Matsumura, S.-i. Wada, Angew. Chem. Int. Ed. 2010, 49, 6516–6519.

    Article  CAS  Google Scholar 

  70. K. S. Park, C. Jung, H. G. Park, Angew. Chem. Int. Ed. 2010, 49, 9757–9760.

    Article  CAS  Google Scholar 

  71. R. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 2009, 48, 7818–7821.

    Article  CAS  Google Scholar 

  72. N. Kanayama, T. Takarada, M. Maeda, Chem. Commun. 2011, 47, 2077–2079.

    Article  CAS  Google Scholar 

  73. H. Torigoe, T. Kozasa, A. Ono, Nucleic Acids Symp. Ser. 2006, 50, 89–90.

    Article  Google Scholar 

  74. J. Joseph, G. B. Schuster, Org. Lett. 2007, 9, 1843–1846.

    Article  CAS  PubMed  Google Scholar 

  75. Z.-G. Wang, J. Elbaz, I. Willner, Nano Lett. 2011, 11, 304–309.

    Article  CAS  PubMed  Google Scholar 

  76. J. Müller, D. Böhme, P. Lax, M. Morell Cerdà, M. Roitzsch, Chem. Eur. J. 2005, 11, 6246–6253.

    Article  PubMed  Google Scholar 

  77. L. Benda, M. Straka, Y. Tanaka, V. Sychrovský, Phys. Chem. Chem. Phys. 2011, 13, 100–103.

    Article  CAS  PubMed  Google Scholar 

  78. M. K. Schlegel, L. Zhang, N. Pagano, E. Meggers, Org. Biomol. Chem. 2009, 7, 476–482.

    Article  CAS  PubMed  Google Scholar 

  79. R. M. Franzini, R. M. Watson, G. K. Patra, R. M. Breece, D. L. Tierney, M. P. Hendrich, C. Achim, Inorg. Chem. 2006, 45, 9798–9811.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support of our research by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Megger, D.A., Megger, N., Müller, J. (2012). Metal-Mediated Base Pairs in Nucleic Acids with Purine- and Pyrimidine-Derived Nucleosides. In: Sigel, A., Sigel, H., Sigel, R. (eds) Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2172-2_11

Download citation

Publish with us

Policies and ethics