Skip to main content

Biochemistry and Regulation of Chlorophyll Biosynthesis

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Chlorophylls and their derivatives play an important role in the light absorption and energy transduction processes of photosynthesis, as well as participate in numerous other metabolic and catabolic activities taking place within the cell. Over the past several years there has been a considerable advancement in our understanding of the biochemistry and genetic regulation of chlorophyll formation. Genes encoding many of the enzymes of the two biosynthetic pathways have been isolated and their nucleotide and encoded primary protein sequences determined. Such molecular analysis has greatly facilitated the detailed examination of how enzyme synthesis and activity are regulated throughout development and under a variety of different growth and environmental conditions. It has also led to new insights into the reaction mechanisms and specificity of several key enzymes in these processes. In this chapter, we present an overview of chlorophyll biosynthesis in the algae, drawing upon work carried out in a wide range of organisms in order to better illustrate features of the biosynthetic process in question or to highlight important differences among species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson HY, Hiller RG, and Walmsley J (1997) Protochlorophyllide reduction and greening in angiosperms: An evolutionary perspective. J Photochem Photobiol B-Biology 41: 201–221

    CAS  Google Scholar 

  • Adra AN and Rebeiz CA (1998) Chloroplast biogenesis 81: Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68: 852–856

    CAS  Google Scholar 

  • Akoyunoglou G, Argyoudi-Akoyunoglou JH, Michel-Wolwertz MR and Sironval C (1967) Chlorophyll a as a precursor for chlorophyll b. Synthesis in barley leaves. Chim Chron 32: 5–8

    CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH-protochlorophyllide oxidoreductase. Eur J Biochem 120: 89–93

    PubMed  CAS  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE and Falk K (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 111: 251–258

    PubMed  CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: Light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B-Biology 43: 87–100

    CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505–1517

    PubMed  CAS  Google Scholar 

  • Avissar YJ and Beale SI (1988) Biosynthesis of tetrapyrrole pigment precursors: Formation and utilization of glutamyltRNA for δ-aminolevulinic acid synthesis by isolated enzyme fractions from Chlorella vulgaris. Plant Physiol 88: 879–886

    PubMed  CAS  Google Scholar 

  • Avissar YJ and Beale SI (1989) Biosynthesis of tetrapyrrole synthesis precursors: Pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89: 852–859

    PubMed  CAS  Google Scholar 

  • Baker ME (1994) Protochlorophyllide reductase is homologous to human carbonyl reductase and pig 20 β-hydroxysteriod dehydrogenase. Biochem J 300: 605–607

    PubMed  CAS  Google Scholar 

  • Battersby AR (1994) How nature builds the pigments of life: The conquest of vitamin B12. Science 264: 1551–1557

    PubMed  CAS  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ and McDonald E (1979) Order of assembly of the four pyrrole rings during the biosynthesis of natural porphyrins. J Chem Soc Chem Commun 1979: 539–541

    Google Scholar 

  • Bauer CE, Bollivar DW and Suzucki JY (1993) Genetic analysis of photopigment biosynthesis in Eubacteria: A guiding light for algae and plants. J Bacteriol 175: 3919–3925

    PubMed  CAS  Google Scholar 

  • Beale SI (1993) Biosynthesis of cyanobacterial tetrapyrrole pigments: Hemes, chlorophylls, and phycobilin. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 519-558. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beale SI (1994) Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 168-171. John Wiley and Sons, Chichester

    Google Scholar 

  • Beale SI (1995) Biosynthesis and structure of porphyrins and hemes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 153-177. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    CAS  Google Scholar 

  • Beale SA and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 287-391. McGraw-Hill, Inc, New York

    Google Scholar 

  • Beale SI, Foley T and Dzelzkalns V (1981) δ-Aminolevulinic acid synthase from Euglena gracilis. Proc Natl Acad Sci US A 78: 1666–1669

    CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1985a) Synthesis of chlorophyllide b from protochlorophyllide in Chlamydomonas reinhardtii y-I. Science 230: 450–453

    PubMed  CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1985b) Biosynthesis of a chlorophyllide b-like pigment in phenanthroline-treated Chlamydomonas reinhardtii y-I. Arch Biochem Biophys 240: 369–379

    PubMed  CAS  Google Scholar 

  • Begley TP and Young H (1989) Protochlorophyllide reductase. I. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J Am Chem Soc 111: 3095–3096.

    CAS  Google Scholar 

  • Berry-Lowe S (1987) The chloroplast glutamate tRNA gene required for δ-aminolevulinate synthesis. Carlsberg Res Commun 52: 197–210

    CAS  Google Scholar 

  • Blankenship RE and Hartman (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23: 94–97

    PubMed  CAS  Google Scholar 

  • Biel A (1989) Genetic analysis and regulation of bacteriochlorophyll biosynthesis. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1125-1134. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bogard M, Camadro JM, Nordmann Y and Labbe P (1989) Purification and properties of mouse liver coproporphyrinogen oxidase. Eur J Biochem 181: 417–421

    PubMed  CAS  Google Scholar 

  • Bollivar DW and Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosyn Res 43: 113–124

    CAS  Google Scholar 

  • Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethylester (oxidative) cyclase. Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol 112: 105–114

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994a) Directed mutational analysis of chlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Jiang Z-Y, Bauer CE and Beale SI (1994b) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes Sadenosyl-L-methionine:magnesium-protoporphyrin IX methyltransferase. J Bacteriol 176: 5290–5296

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Wang S, Allen JP and Bauer CE (1994c) Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: Characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry 33: 12763–12768

    PubMed  CAS  Google Scholar 

  • Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9: 867–878

    PubMed  CAS  Google Scholar 

  • Bruyant P and Kannangara CG (1987) Biosynthesis of δaminolevulinate in greening barley leaves. VIII. Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52: 99–109

    CAS  Google Scholar 

  • Budzikiewicz H and Taraz K (1971) Chlorophyll c. Tetrahedron 27: 1447–1460

    CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 96: 7134–7138

    Google Scholar 

  • Cahoon AB and Timko MP (2000) yellow-in-the-dark mutants of Chlamydomonas lack the CHLL subunit of light-independent protochlorophyllide reductase. Plant Cell 12: 559–568

    PubMed  CAS  Google Scholar 

  • Camadro JM, Chambon H, Jolies J and Labbe P (1986) Purification and properties of coproporphyrinogen oxidase from Saccharomyces cerevisiae. Eur J Biochem 156: 579–587

    PubMed  CAS  Google Scholar 

  • Castelfranco PA, Walker CJ and Weinstein JD (1994) Biosynthetic studies on chlorophylls: From protoporphyrin IX to protochlorophyllide. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of the Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 194-204. John Wiley and Sons, Chichester

    Google Scholar 

  • Chang T-E, Wegmann B and Wang W-Y (1990) Purification and characterization of glutamyl-tRNA synthetase: An enzyme involved in chlorophyll biosynthesis. Plant Physiol 93: 1641–1649

    PubMed  CAS  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O’Neill GP and Soll D (1990a) Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. J Biol Chem 265: 4054–4057.

    PubMed  CAS  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O’Neill GP and Söll D (1990b) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063

    PubMed  CAS  Google Scholar 

  • Chen TC and Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15: 993–1005

    CAS  Google Scholar 

  • Cheung K-M, Spencer P, Timko MP and Shoolingin-Jordan PM (1997) Characterization of a recombinant pea 5-aminolevulinic acid dehydratase and comparative inhibition studies with the Escherichia coli dehydratase. Biochemistry 36: 1148–1156.

    PubMed  CAS  Google Scholar 

  • Choquet Y, Rahire M, Girard-Bascou J, Erickson J and Rochaix J-D (1992) A chloroplast gene is required for the lightindependent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704

    PubMed  CAS  Google Scholar 

  • Chow KS, Singh DP, Walker AR and Smith AG (1998) Two different genes encode ferrochelatase in Arabidopsis: Mapping expression and subcellular targeting of the precursor proteins. Plant J 15: 531–541

    PubMed  CAS  Google Scholar 

  • Chunayev AS, Mirnaya ON, Maslov VG and Boschetti A (1991) Chlorophyll b and chloroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25: 291–301

    Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868

    PubMed  CAS  Google Scholar 

  • Dailey HA (1990) Conversion of coproporphyrinogen to protoheme in higher eukaryotcs and bacteria: Terminal three enzymes. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 123-161. McGraw-Hill, Inc., New York

    Google Scholar 

  • Dörnemann D, Kotzabasis K, Richter P, Breu V and Senger H (1989) The regulation of chlorophyll biosynthesis by the action of protochlorophyllide on Glut-RNA-ligase. Bot Acta 102: 112–115

    Google Scholar 

  • Dougherty RC, Strain HH, Svec WA, Uphaus RE and Katz JJ (1970) The structure, properties and distribution of chlorophyll c. J Am Chem Soc 92: 2826–2833

    PubMed  CAS  Google Scholar 

  • Dreschler-Theilmann B, Dörnemann D and Senger H (1993) Synthesis of protoheme via both the C5 and the Shemin pathway, in the pigment mutant C-2A of Scenedesmus obliquus. Z Naturforsch 48c: 584-589

    Google Scholar 

  • Erskine PT, Senior N, Awan S, Lambert R, Lewis G, Tickle IJ, Sarwar M, Spencer P, Thomas P, Warren MJ, Shoolingin-Jordan PM, Wood SP and Cooper JB (1997) X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nature Struct Biol 4: 1025–1031

    PubMed  CAS  Google Scholar 

  • Espineda CE, Lnford AS, Devine D and Brusslan JA (1999) The At CAO gene, encoding chlorophyll a oxygenase is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 10507–10511

    PubMed  CAS  Google Scholar 

  • Fairchild CD and Quail PH (1998) The phytochromes: Photosensory perception and signal transduction. Symposia Soc. Experim Biol 51: 85–92

    CAS  Google Scholar 

  • Fawley MW (1989) A new form of chlorophyll c involved in light-harvesting. Plant Physiol 91: 727–732

    PubMed  CAS  Google Scholar 

  • Ford C and Wang W-Y (1980a) Three new yellow loci in Chlamydomonas reinhardtii. Mol Gen Genet 179: 259–263

    PubMed  CAS  Google Scholar 

  • Ford C and Wang W-Y (1980b) Temperature sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5–10

    Google Scholar 

  • Ford C and Wang W-Y (1982) Instability at the y-1 locus of Chlamydomonas reinhardtii. Mol Gen Genet 187: 286–290

    Google Scholar 

  • Ford C, Mitchell S and Wang W-Y (1981) Protochlorophyllide photoconversion mutants of Chlamydomonas reinhardtii. Mol Gen Genet 184: 460–464

    CAS  Google Scholar 

  • Ford C, Mitchell S and Wang W-Y (1983) Characterization of NADPH:protochlorophyllide photoconversion in the y-7 and pc-l y-7 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 194: 290–292

    Google Scholar 

  • Frankenberg N, Heinz DW and Jahn D (1999) Production, purification, and characterization of a Mg2+ responsive porphobilinogen synthase from Pseudomonas aeruginosa. Biochemistry 38: 13968–13975

    PubMed  CAS  Google Scholar 

  • Frydman RB and G Feinstein (1974) Studies on porphobilinogen deaminase and uroporphyrinogen III cosynthase from human erythrocytes. Biochim Biophys Acta 350: 358–373

    PubMed  CAS  Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: A key step in the greening of plants. Plant Cell Physiol 37: 411–421

    PubMed  CAS  Google Scholar 

  • Fujita Y and Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified BChl and BchN-BchB subunits. J. Biol. Chem. 275: 23583–23588

    Google Scholar 

  • Fujita Y, Takahashi Y, Shonai F, Ogura Y and Matsubara H (1991) Cloning, nucleotide sequences and differential expression of the nifH and nifH-like (frxC) genes from the filamentous nitrogen-fixing cyanobacterium Plectonema boryanum. Plant Cell Physiol 32: 1093–1106

    CAS  Google Scholar 

  • Fujita Y, Matsumoto H, Takahashi Y and Matsubara H (1993) Identification of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34: 305–314

    PubMed  CAS  Google Scholar 

  • Fujita Y, Takagi H and Hase T (1996) Identification of the chlB gene and the gene product essential for the light-independent chlorophyll biosynthesis in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 37: 313–323

    PubMed  CAS  Google Scholar 

  • Fujita Y, Takagi H and Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: The physiological significance of the co-existence of light-dependent and independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol. 39: 177–185

    Google Scholar 

  • Gaubier P, Wu H-J, Laudié, Delseny M and Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249: 58–64

    PubMed  CAS  Google Scholar 

  • Geider RJ and Osborne BA (1992) Measuring Photosynthetic Pigments. In: Dring MJ and Melkonian M (eds) Algal Photosynthesis: The Measurement of Algal Gas Exchange, pp 107-121. Chapman and Hall, New York

    Google Scholar 

  • Gibson LCD and Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett 352: 127–130

    PubMed  CAS  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the product s of the bchH,-I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941–1944

    PubMed  CAS  Google Scholar 

  • Grafe S, Saluz HP, Grimm B and Hanel F (1999) The role of the subunit CHLD in the chelation step of protoporphyrin IX. Proc Natl Acad Sci USA 96: 1744–1749

    Google Scholar 

  • Grandchamp B and Nordmann Y (1978) The mitochondrial localization of coproporphyrinogen III oxidase. Biochem J 176: 97–10

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174: 681–692

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1980) Substrate-specificity studies on protochlorophyllide reductase in barley (Hordeum vulgare) etioplast membranes. Biochem J 186: 267–278

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1991) Protochlorophyllide photoreduction. In: Scheer H (ed) The Chlorophylls, pp 433-449. CRC Press, Boca Raton

    Google Scholar 

  • Griffiths WT, McHugh T and Blankenship RE (1996) The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett 398: 235–238

    PubMed  CAS  Google Scholar 

  • Grimm B (1998) Novel insights into the control of tetrapyrrole metabolism of higher plants. Curr Opin Plant Biol 1: 245–250

    PubMed  CAS  Google Scholar 

  • Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate-1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87: 4169–4173

    PubMed  CAS  Google Scholar 

  • Grimm B, Bull A, Welinder KG, Gough SP and Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate-1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54: 67–79

    PubMed  CAS  Google Scholar 

  • Grimm B, Smith MA and von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206: 579–585

    PubMed  CAS  Google Scholar 

  • Guo R, Luo M and Weinstein JD (1998) Magnesium-chelatase from developing pea leaves. Characterization of a soluble extract from chloroplasts and resolution into three required protein fractions. Plant Physiol 116: 605–615

    CAS  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A and Stutz E (1993) Complete sequence of Euglena gracilis chloroplast. DNA Nucl Acids Res 21: 3537–3544

    CAS  Google Scholar 

  • Hansson M and Kannangara CG (1997) ATPase and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94: 13351–13356

    PubMed  CAS  Google Scholar 

  • Hart GJ and Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gracilis. Biochem J 232: 151–160

    PubMed  CAS  Google Scholar 

  • Hart GJ, Miller AD, Leeper FJ and Battersby AR (1987) Biosynthesis of natural porphyrins: Proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 1987: 1762–1765

    Google Scholar 

  • He Z-H, Li J, Sundqvist C and Timko MP (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546.

    PubMed  CAS  Google Scholar 

  • He Q, Brune D, Nieman R and Vermaas W (1998) Chlorophyll a synthesis upon interruption and deletion of por coding ror the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chIL - strain of Synechocystis sp. PCC6803. Eur J Biochem 253: 161–172

    PubMed  CAS  Google Scholar 

  • Helfrich M and Rüdiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c: 231-238

    Google Scholar 

  • Helfrich M, Schoch S, Lempert U, Cmiel E and Rüdiger W (1994) Chlorophyll synthetase can not synthesize chlorophyll a’. Eur J Biochem 219: 267–275

    PubMed  CAS  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: An a 2-dimeric vitamin-B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94: 4866–4871

    PubMed  CAS  Google Scholar 

  • Herman CA, Im CS and Beale SI (1999) Light regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme glutamate-1-semialdehyde aminotransferase in carotenoiddeficient Chlamydomonas reinhardtii cells. Plant Mol Biol 39: 289–297

    PubMed  CAS  Google Scholar 

  • Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthetases and uroporphyrinogen III cosynthetase: Interactions between the enzymes. Ann NY Acad Sci 244: 401–418

    PubMed  CAS  Google Scholar 

  • Hill K and Merchant S (1995) Coordinate expression of coproporphyrinogen oxidase and cytochrome c 6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J 5: 857–865

    Google Scholar 

  • Höfgen R, Axelsen K, Kannangara CG, Schüttke I, Pohlenz H-D, Willmitzer L, Grimm B and von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: Inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91: 1726–1730

    PubMed  Google Scholar 

  • Holt AS (1961) Further evidence of the relation between 2devinyl-2-formyl-chlorophyll a and chlorophyll d. Can J Bot 39: 327–331

    CAS  Google Scholar 

  • Holt AS and Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37: 507–514

    CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92: 3254–3258

    PubMed  CAS  Google Scholar 

  • Hoober JK, Kahn A, Ash D, Gough S and Kannangara CG (1988) Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Comm 53: 11–25

    CAS  Google Scholar 

  • Hoober JK, White RA, Marks DB and Gabriel JL (1994) Biogenesis of thylakoid membranes with emphasis on the process in Chlamydomonas. Photosynth Res 39: 15–31

    CAS  Google Scholar 

  • Houen G, Gough SP and Kannangara CG (1983) δ-Aminolevulinate synthesis in greening barley. V. The structure of glutamate 1-semialdehyde. Carlsberg Res Commun 48: 567–572

    CAS  Google Scholar 

  • Howe G and Merchant S (1994) Role of heme in the biosynthesis of cytochrome c 6. J Biol Chem 269: 5824–5832

    PubMed  CAS  Google Scholar 

  • Hsu WP and Miller GW (1970) Coproporphyrinogenase in tobacco (Nicotiana tabacum L.). Biochem J 117: 215–220

    PubMed  CAS  Google Scholar 

  • Huang C and Liu X-Q (1992) Nucleotide sequence of the frxC, petB and trnL genes in the chloroplast genome of Chlamydomonas reinhardtii. Plant Mol Biol 18: 985–988

    PubMed  CAS  Google Scholar 

  • Huang D-D and Wang W-Y (1986) Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261: 13451–13455

    PubMed  CAS  Google Scholar 

  • Huang D-D, Wang W-Y, Gough SP and Kannangara CG (1984) δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484

    PubMed  CAS  Google Scholar 

  • Huang L, Bonner BA and Castelfranco PA (1989) Regulation of 5-aminolevulinic acid synthesis in developing chloroplasts. II. Regulation of ALA-synthesizing capacity by phytochrome. Plant Physiol 90: 1003–1008

    PubMed  CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: A key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711–3719

    PubMed  CAS  Google Scholar 

  • Hag LL, Kumar Am and Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275

    Google Scholar 

  • Im C-S, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245–2253

    PubMed  CAS  Google Scholar 

  • Ito H, Ohtsuka T and Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271: 1475–1479

    PubMed  CAS  Google Scholar 

  • Ito H, Takaichi S, Tsuji H and Tanaka A (1994) Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. J Biol Chem 269: 22034–22038

    PubMed  CAS  Google Scholar 

  • Ito H, Tanaka Y, Tsuji H and Tanaka A (1993) Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Arch Biochem Biophys 306: 148–151

    PubMed  CAS  Google Scholar 

  • Jacobs NJ and Jacobs JM (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and heme biosynthesis: Purification and partial characterization of the enzyme from barley organelles. Biochem J 244: 219–224

    PubMed  CAS  Google Scholar 

  • Jacobs NJ, Borotz SE and Jacobs JM (1989) Characteristics of purified protoporphyrinogen oxidase from barley. Biochem Biophys Res Commun 161: 790–796

    PubMed  CAS  Google Scholar 

  • Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenergetics Biomembranes 27: 169–179

    CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNAdependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77–80

    PubMed  CAS  Google Scholar 

  • Jahn D, Chen M-W and Söil D (1991) Purification and functional characterization of glutamate 1-semialdehyde aminotransferase from Chlamydomonas reinhardtii. J Biol Chem 266: 161–167

    PubMed  CAS  Google Scholar 

  • Jeffrey SW (1969) Properties of two spectrally different components in chlorophyll c preparations. Biochim Biophys Acta 177: 456–467

    PubMed  CAS  Google Scholar 

  • Jeffrey SW and Wright SW (1987) A new spectrally distinct component in preparations of chlorophyll c from the microalga Emiliania huxleyi (Prymnesiophyceae). Biochim Biophy Acta 894: 180–188

    CAS  Google Scholar 

  • Jeffrey SW and Vesk M (1997) Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey SW, Mantoura RFC and Wright SW (eds) Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, pp 37-84. UNESCO, Paris

    Google Scholar 

  • Jensen PE, Gibson LCD and Hunter CN (1998) Determinants of the catalytic activity with the use of the purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem J 334: 335–344

    PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chll, chlD, and chlH genes from the cyanobacterium Synechocystis PCC 6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662–16667

    PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f,-g, and -h. Mol Gen Genet 250: 383–394

    PubMed  CAS  Google Scholar 

  • Jones MC, Jenkins JM, Smith AG and Howe CJ (1994) Cloning and characterization of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24: 435–448

    PubMed  CAS  Google Scholar 

  • Jones RM and Jordan PM (1993) Purification and properties of uroporphyrinogen decarboxylase from Rhodobacter sphaeroides. Biochem J 293: 703–712

    PubMed  CAS  Google Scholar 

  • Jones RM and Jordan PM (1994) Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 299: 895–902

    PubMed  CAS  Google Scholar 

  • Jordan PM (1991) The biosynthesis of 5-aminolevulinic acid and its transformation into uroporphyrinogen III. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 1-66. Elsevier, Amsterdam

    Google Scholar 

  • Jordan PM and Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225: 87–92

    PubMed  CAS  Google Scholar 

  • Jordan PM, Thomas SD and Warren (1988a) Purification, crystallization, and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12. Biochem J 254: 427–435

    PubMed  CAS  Google Scholar 

  • Jordan PM, Mgbeje IAB, Thomas SD and Alwan AF (1988b) Nucleotide sequence of the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for a hem operon. Biochem J 249: 613–616

    PubMed  CAS  Google Scholar 

  • Jordan PM, Cheung K-M, Sharma RP and Warren MJ (1993) 5-Amino-6-hydroxy-3,4,5,6-tetrahydropyan-2-one (HAT): a stable, cyclic form of glutamate-1-semialdehyde, the natural precursor for tetrapyrroles. Tetra Lett 34: 1177–1180

    CAS  Google Scholar 

  • Juknat AA, Seubert A, Seubert S and Ippen H (1989) Studies on uroporphyrinogen decarboxylase of etiolated Euglena gracilis Z. Eur J Biochem 179: 423–428

    PubMed  CAS  Google Scholar 

  • Kannangara CG, Andersen RV, Pontoppidan B, Willows and von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolevulinate. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of the Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 3-20. John Wiley and Sons, Chichester

    Google Scholar 

  • Kay SA and Griffiths WY (1983) Light-induced breakdown of NADPH-protochlorophyllide oxidoreductase in vitro. Plant Physiol 72: 229–236

    PubMed  CAS  Google Scholar 

  • Kiel JAKW, Ten Berge AM and Venema G (1991) Nucleotide sequence of the Synechococcus sp PCC 7942 hemE gene encoding the homologue of mammalian uroporphyrinogen decarboxylase. J DNA Sequencing Mapping 2: 415–418

    Google Scholar 

  • Kirk JTO and Tilney-Bassett RAE (1978) The Plastids, Elsevicr: North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • KnaustR, SeyfriedB, Schmidt L, Schulz R and Senger H(1993) Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:protochlorophyllide oxidoreductase of barley expressed in Escherichia coli. J Photochem Photobiol Biol 20: 161–166

    Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1137–1146

    Google Scholar 

  • Kotzabasis K and Senger H (1989) Biosynthesis of chlorophyll b in pigment mutant C-2A of Scenedesmus obliquus. Physiol Plant 76: 474–478

    CAS  Google Scholar 

  • Kowallik KV, Stoebe B, Schaffran I and Freier U (1995) The chloroplast genome of a chlorophyll a + c containing alga Odontella sinensis. Plant Mol Biol Reptr 13: 336–342

    CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94: 14168–14172

    PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W and Beck CF (2000) Chloroplast signalling in the light induction of HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523–531

    PubMed  CAS  Google Scholar 

  • Kruse E, Mock H-P and Grimm B (1995) Coproporphyrinogen III oxidase from barley and tobacco—sequence analysis and initial expression studies. Planta 196: 796–803

    PubMed  CAS  Google Scholar 

  • Kumar AM, Schaub U, Söll D and Ujwal ML (1996a) Glutamyltransfer RNA: At the crossroad between chlorophyll and protein biosynthesis. Trends Plant Sci 1: 371–376

    Google Scholar 

  • Kumar AM, Csankovszki G and Söll D (1996b) A second differentially expressed glutamyl-tRNA rcductase gene from Arabidopsis thaliana. Plant Mol Biol 30: 419–426

    PubMed  CAS  Google Scholar 

  • Labesse G, Vidal-Cors A, Chomilier J, Gaudry M and Mornon J-P (1994) Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-acccpting oxidoreductases: The single-domain reductases/epimerases/dehydrogenases (the ‘RED’ family). Biochem J 304: 95–99

    PubMed  CAS  Google Scholar 

  • Lebedev N and Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58: 5–23

    CAS  Google Scholar 

  • Lebedev N and Timko MP (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96: 9954–9959

    PubMed  CAS  Google Scholar 

  • Lebedev N, van Cleve B, Armstrong G and Apel K (1995) Chlorophyll synthesis in deetiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive Pchlide-F655. Plant Cell 7: 2081–2090

    PubMed  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R and Rebeiz CA (1992) Chloroplast biogenesis 65: Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99: 1134–1140

    PubMed  CAS  Google Scholar 

  • Lee RE (1999) Phycology, 3rd Edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Leeper FJ (1991) Intermediate steps in the biosynthesis of chlorophylls. In: Scheer H (ed) The Chlorophylls, pp 407-431. CRC Press, Boca Raton

    Google Scholar 

  • Leeper FJ (1994) The evidence for a spirocyclic intermediate in the formation of uroporphyrinogen III by cosynthase. In: Chadwick DJ and Ackrill (eds) The Biosynthesis of the Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 111-130. John Wiley and Son, Chichester

    Google Scholar 

  • Lermontova I, Kruse E, Mock H-P and Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94: 8895–8900

    PubMed  CAS  Google Scholar 

  • Li J and Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15–37

    PubMed  CAS  Google Scholar 

  • Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817–1829

    PubMed  CAS  Google Scholar 

  • Lim SH, Witty M, Wallace-Cook ADM, Ilag LI and Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol Biol 26: 863–872

    PubMed  CAS  Google Scholar 

  • Liu XQ, Xu H and Huang C (1993) Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297–308

    PubMed  CAS  Google Scholar 

  • Little HN and Jones OTG (1976) The subcellular localization and properties of the ferrochelatase of etiolated barley. Biochem J 156: 309–314

    PubMed  CAS  Google Scholar 

  • Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Malashkevich VN, Hadener A, Warren MJ and Shoolingin-Jordan PM (1996) The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.7Ã… resolution. Proteins 25: 48–78

    PubMed  CAS  Google Scholar 

  • Luo J and Lim K (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289: 529–532

    PubMed  CAS  Google Scholar 

  • Madsen O, Sandal L, Sandal NN and Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35–43

    PubMed  CAS  Google Scholar 

  • Manning WM and Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151: 1–19

    CAS  Google Scholar 

  • Martin GEM, Timko MP and Wilks HM (1997) Purification and kinetic analysis of pea NADPH-protochlorophyllide oxidoreductase expressed as a fusion with maltose binding protein in Escherichia coli. Biochem J 325: 139–145

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro J-M, Labbe P and Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260: 231–235

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro J-M, Joyard J and Douce R (1994) Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem 269: 15010–15015

    PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617–629

    PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1995a) Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, Sδll-aminolevulinic acid dehydratase (porphobilinogen synthase) Plant Mol Biol 27: 607–617

    PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1995b) Blue-light-regulated expression of two genes for early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471–479

    PubMed  CAS  Google Scholar 

  • Mau Y-H, Zheng P, Krishnasamy S, and Wang W-Y (1992) Light regulation of δ-aminolevulinic acid in Chlamydomonas. Plant Physiol 98: S99

    Google Scholar 

  • Mayer SM and Beale SI (1990) Light regulation of δaminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94: 1365–1375

    PubMed  CAS  Google Scholar 

  • Mayer SM and Beale SI (1991) δ-Aminolevulinic acid biosynthesis from glutamate in Euglena gracilis. Photocontrol of enzyme levels in a chlorophyll-free mutant. Plant Physiol 97: 1094–1102

    PubMed  CAS  Google Scholar 

  • Mayer SM, Weinstein JD and Beale SI (1987) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of Euglena gracilis. J Biol Chem 262: 12541–12549

    PubMed  CAS  Google Scholar 

  • Meeks JC (1974) Chlorophylls. In: Stewart WDP (ed) Algal Physiology and Biochemistry, pp 161-175. University of California Press, Berkeley

    Google Scholar 

  • Miyamoto K, Tanaka R, Teramoto H, Masuda T, Tsuji H and Inokuchi H (1994) Nucleotide sequences of cDNA clones encoding ferrochelatase from barley and cucumber. Plant Physiol 105: 769–770

    PubMed  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402

    Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    CAS  Google Scholar 

  • Mock H-P, Trainotti L, Kruse E and Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28: 245–256

    PubMed  CAS  Google Scholar 

  • Moloney MA, Hoober JK, and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll-protein complexes during greening of Chlamydomonas reinhardtii y-1 at 38 °C. Plant Physiol 91: 1100–1106

    Google Scholar 

  • Mosinger E, Batschauer A, Schafer E and Apel K (1985) Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare) Eur J Biochem 147: 137–142

    PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y and Takamiya K (1995) Cloning, subcellular localization and expression of CHLI, a subunit of magnesiumchelatase in soybean. Biochem Biophys Res Commun 215: 422–428

    PubMed  CAS  Google Scholar 

  • Narita S-I, Tanaka R, Ito T, Okada K, Taketani S and Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182: 169–175

    PubMed  CAS  Google Scholar 

  • Nayar P and Begley TP (1996) Protochlorophyllide reductase III. Synthesis of a protochlorophyllide-dihydroflavin complex. Photochem Photobiol 63: 100–105

    PubMed  CAS  Google Scholar 

  • Nelson JR and Wakeham SG (1989) A phytol-substituted chlorophyll c from Emiliania huxleyi (Prymnesiophyceae). J Phycol 25: 761–766

    CAS  Google Scholar 

  • Nicholson-Guthrie CS and GD Guthrie (1987) Accumulation of protoporphyrin-IX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii. Arch Biochem Biophys 252: 570–573

    PubMed  CAS  Google Scholar 

  • Nikulina KV, Chekunova EM, Rüdiger W and Chunacv AS (1997) Genetic analysis of revertants of chlorophyll-b deficient mutants of Chlamydomonas reinhardtii. Genetika 33: 577–582

    Google Scholar 

  • Oelze-Karow H and Mohr H (1978) Control of chlorophyll b biosynthesis by phytochrome. Photochem Photobiol 27: 189–193

    CAS  Google Scholar 

  • Ogawa T, Inoue Y, Kitajima M and Shibata K (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochem Photobiol 18: 229–235.

    CAS  Google Scholar 

  • O’hEocha C (1971) Pigments of the red algae. Oceanogr Mar Biol Ann Rev 9: 61–82

    CAS  Google Scholar 

  • Ohtsuka T, Ito H and Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113: 137–147

    PubMed  CAS  Google Scholar 

  • Oliver RP and Griffiths WT (1981) Covalent labelling of the NADPH:protochlorophyllide oxidoreductase from etioplast membranes with (3H)N-phenylmaleimide. Biochem J 195: 93–101

    PubMed  CAS  Google Scholar 

  • O’Neill GP and Söll D (1990) Expression of the Synechocystis sp. PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol 172: 6363–6371

    PubMed  Google Scholar 

  • Oshio H, Shibata H, Mito N, Yamamoto M, Harris EH, Gillham NW, Boynton JE and Sato R (1993) Isolation and characterization of a Chlamydomonas reinhardtii mutant resistant to photobleaching herbicides. Z Naturforsch 48c: 339-344

    Google Scholar 

  • Oster U and Rüdiger W (1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110: 420–423

    CAS  Google Scholar 

  • Oster U, Bauer CE and Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272: 9671–9676

    PubMed  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, and Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21: 305–310

    Google Scholar 

  • Papenbrock J, Grafe S, Kruse E, Hanel F and Grimm B (1997) Mg-chelatase of tobacco: Identification of a ChlD cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system and reconstitution of the enzyme activity by co-expression of recombinant CHLD, CHLH, and CHLI. Plant J 12: 981–990

    PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E and Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122: 1161–1169.

    PubMed  CAS  Google Scholar 

  • Peschek GA, Hinterstoisser B, Pineau B and Missbichler A (1989) Light-independent NADPH-protochlorophyllide oxidoreductase activity in purified plasma membrane from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun 162: 71–78

    PubMed  CAS  Google Scholar 

  • Peters JW, Fisher K and Dean DR (1995) Nitrogenase structure and function: A biochemical-genetic perspective. Annu Rev Microbiol 49: 335–366

    PubMed  CAS  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAGLU reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529–537

    PubMed  CAS  Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65: 492–516

    CAS  Google Scholar 

  • Porra RJ and Lascelles J (1968) Studies on ferrochelatase: The enzymatic formation of haem in proplastids, chloroplasts and plant mitochondria. Biochem J 108: 343–348

    PubMed  CAS  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1993) Derivation of the formyl-group oxygen of chlorophyll-b from molecular oxygen in greening leaves of a higher plant (Zea mays) FEBS Lett 323: 31–34

    PubMed  CAS  Google Scholar 

  • Porra RJ, Schafer W, Katheder I, Scheer H (1995) The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: Evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett. 371: 21–24

    Google Scholar 

  • Porra RJ, Schafer W, Gad’On N, Katheder I, Drews G, Hugo S (1996) Origin of the two carbonyl oxygens of bacteriochlorophyll a—Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. Eur. J. Biochem. 239: 85–92

    Google Scholar 

  • Porra RJ, Pfundel EE and Engel N (1997) Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC and Wright SW (eds) Phytoplankton Pigments in Oceanography: Guidelines to Modem Methods, pp 85-126. UNESCO, Paris

    Google Scholar 

  • Porra RJ, Urzinger M, Winkler J, Bubenzer C, Scheer H (1998) Biosynthesis of the 3-acetyl and 131-oxo groups of bacteriochlorophyll a in the facultative aerobic bacterium, Rhodovulum sulfidophilum. Eur. J. Biochem. 257: 185–191

    Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS and Wynne MJ (eds), The Biology of Seaweeds, pp 458-492. University of California Press, Berkeley

    Google Scholar 

  • Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW and Boynton JE (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene conferring herbicide resistance from a nuclear genomic library of Chlamydomonas reinhardtii. Plant Mol Biol 38: 839–858

    PubMed  CAS  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA and loannides IM (1994) Chlorophyll a biosynthetic heterogeneity. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 177-189. John Wiley and Sons, Chichester

    Google Scholar 

  • Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323–343

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B and Apel K. (1995a) Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7: 161–172

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Runge S and Apel K (1995b) Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH:protochlorophyllide oxidoreductase, a nuclearencoded plast precursor protein. J Cell Biol 129: 299–308

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995c) A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206–6212

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Lebedev N and Apel K (1996a) PORA and PORB, two light-dependent protochlorophyllidereducing enzymes of angiosperm chlorophyll biosynthesis. The Plant Cell 8: 763–769

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996b) Evolution of chlorophyll biosynthesis—The challenge to survive photooxidation. Cell 86: 703–705

    PubMed  CAS  Google Scholar 

  • Richard M, Tremblay C and Bellemare G (1994) Chloroplastic genomes of Ginko biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Curr Genet 26: 159–165.

    PubMed  CAS  Google Scholar 

  • Richards WR (1993) Biosynthesis of the chlorophyll chromophore of pigmented thylakoid proteins. In: Sundqvist C and Ryberg M (eds) Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 91-178. Academic Press, Inc., New York

    Google Scholar 

  • Rieble S and Beale SI (1991a) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266: 9740–9744

    PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1991b) Separation and partial characterization of enzymes catalyzing δ-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289: 289–297

    PubMed  CAS  Google Scholar 

  • Roitgrund C and Mets LJ (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 17: 147–153

    CAS  Google Scholar 

  • Roper JM and Smith AG (1997) Molecular localisation of ferrochelatase in higher plant chloroplasts. Eur J Biochem. 246: 32–37

    Google Scholar 

  • Rosé S, Frydman RB, de los Santos C, Sburlati A, Valasinas A and Frydman B (1988) Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III. Biochemistry 27: 4871–4879

    PubMed  Google Scholar 

  • Rowe JD and Griffiths TW (1995) Protochlorophyllide reductase in photosynthetic prokaryotes and its role in chlorophyll synthesis. Biochem J 311: 417–424

    PubMed  CAS  Google Scholar 

  • Rüdiger W (1993) Esterification of chlorophyllide and its implications for thylakoid development. In: Sundqvist C and Ryberg M (eds), Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 219-240. Academic Press, Inc., New York

    Google Scholar 

  • Rüdiger W, Benz J and Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 190: 193–200

    Google Scholar 

  • Rüdiger W, Klement H, Helfrich M, Tanaka A, Schoch S and Oster U (1999) Redox reactions in the last steps of chlorophyll biosynthesis. In: Argyroudi-Akoyunoglou JH, Senger H (eds), The Chloroplast: From Molecular Biology to Biotechnology, pp 185-190. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sager R (1955) Inheritance in the green alga Chlamydomonas reinhardtii. Genetics 40: 476–489

    PubMed  CAS  Google Scholar 

  • Sager R and Palade GE (1954) Chloroplast structure in green and yellow strains of Chlamydomonas. Exp Cell Res 7: 584–588

    PubMed  CAS  Google Scholar 

  • Sangwan I and O’Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829–834

    PubMed  CAS  Google Scholar 

  • Sato R, Yamamoto M, Shibata H, Oshio H, Harris EH, Gillham NW and Boynton JE (1994) Characterization of a mutant of Chlamydomonas reinhardtii resistant to protoporphyrinogen oxidase inhibitors. In: Duke SO and Rebeiz CA (eds), Porphyric Pesticides: Chemistry, Toxicology and Pharmaceutical Applications, ACS Symposium Series 559, pp 91-104. American Chemical Society, Washington, DC

    Google Scholar 

  • Scheumann V, Helfrich M, Schoch S and Rüdiger W (1996) Reduction of the formyl group of zinc pheophorbide b in vitro and in vivo: A model for the chlorophyll b to a transformation. Z Naturforsch 51c: 185-194

    Google Scholar 

  • Scheumann V, Schoch S and Rüdiger W (1998) Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin. J Biol Chem. 273: 35102–35108

    Google Scholar 

  • Schneegurt MA and Beale SI (1992) Origin of the chlorophyll b formyl oxygen atom in Chlorella vulgaris. Biochemistry 31: 11677–11683

    PubMed  CAS  Google Scholar 

  • Schnecgurt MA, Rieble S and Beale SI (1988) The tRNA required for in vitro δ-aminolevulinic acid formation from glutamate in Synechocystis extracts. Plant Physiol 88: 1358–1366

    Google Scholar 

  • Schoch S and Schafer W (1978) Tetrahydrogeranylgeraniol, a precursor of phytol in the biosynthesis of chlorophyll alocalization of the double bonds. Z Naturforsch 33c: 408-412

    Google Scholar 

  • Schoch S, Hehlein C and Rüdiger W (1980) Influence of anaerobiosis on chlorophyll biosynthesis in greening oat seedlings (A vena sativum L.). Plant Physiol 66: 576–579

    PubMed  CAS  Google Scholar 

  • Schoch S, Helfrich M, Wiktorsson B, Sundqvist C, Rüdiger W and Ryberg M (1995) Photoreduction of protopheophorbide with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum). Eur J Biochem 229: 291–298

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Cough S, Berry-Lowe S, Kannangara CG and Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    PubMed  Google Scholar 

  • Schulz R and Senger H (1993) Protochlorophyllide reductase: A key enzyme in the greening process. In: Sundqvist C and Ryberg M (eds), Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 179-218. Academic Press, New York

    Google Scholar 

  • Sharif AL, Smith AG and Abell C (1989) Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis: The chloroplast hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184: 353–359

    PubMed  CAS  Google Scholar 

  • Shedbalker VP, Ionnides IM and Rebeiz C (1991) Chloroplast Biogenesis. Detection of monovinyl protochlorophyll(ide) b in plants. J Biol Chcm 266: 17151–17157

    Google Scholar 

  • Shoolingin-Jordan PM (1995) Porphobilinogen deaminase and uroporphyrinogen HI synthase: Structure, molecular biology, and mechanism. J Bioenergetics Biomembranes 27: 181–195

    CAS  Google Scholar 

  • Skinner JS and Timko MP (1999) Differential expression of genes encoding the light-dependent and light-independent enzymes forprotochlorophyllide reduction during development in loblolly pine. Plant Mol Biol 39: 577–592

    PubMed  CAS  Google Scholar 

  • Smith AG (1986) Enzymes for chlorophyll synthesis in developing peas. In: Akoyunoglou G and Senger H (eds), Regulation of Chloroplast Differentiation, pp 49-54. Alan R. Liss, Inc, New York

    Google Scholar 

  • Smith AG (1988) Subcellular localization of two porphyrinsynthesis enzymes in Pisum sativum (pea) and Arum (cuckoopint) species. Biochem J 249: 423–428

    PubMed  CAS  Google Scholar 

  • Smith AG, Marsh O and Elder GH (1993) Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J 292: 503–508

    PubMed  CAS  Google Scholar 

  • Smith AG, Santana MA, Wallace-Cook ADM, Roper JM and Labbe-Bois R (1994) Isolation of a cDNA encoding chloroplast ferrochelatae from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 269: 13405–13413

    PubMed  CAS  Google Scholar 

  • Smith CA, Suzuki JY and Bauer CE (1996) Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Plant Mol Biol 30: 1307–1314

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeraniol: Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849–854

    PubMed  CAS  Google Scholar 

  • Spano AJ and Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.). Biochim Biophys Acta 1076: 2–36

    Google Scholar 

  • Spencer P and Jordan PM (1994) Investigation of the nature of the two metal-binding sites in 5-aminolevulhiic acid dehydratase from Escherichia coli. Biochem J 300: 373–381

    PubMed  CAS  Google Scholar 

  • Spencer P and Jordan PM (1995) Characterization of the two 5aminolcvulinic acid binding sites, the A-and P-sites, of 5ammolevulinic acid dehydratase from Escherichia coli. Biochem J 305: 151–158

    PubMed  CAS  Google Scholar 

  • Stamford NPJ, Duggan S and Li YF (1997) Biosynthesis of vitamin B12: The multi-enzyme synthesis of precorrin-4 and factor IV. Chem Biol 4: 445–451

    PubMed  CAS  Google Scholar 

  • Stange-Thomann N, Thomann H-U, Lloyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGLU uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91: 7947–7951

    PubMed  CAS  Google Scholar 

  • Stolbova AV (1971) Genetic analysis of pigment mutations of Chlamydomonas reinhardtii. II. Analysis of the inheritance of mutations of chlorophyll deficiency and light sensitivity in crosses with the wild-type. Genetika 7: 90–94

    CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19: 149–168

    PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929–940

    PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. J Biol Chem 270: 3732–3740

    PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Ann Rev Genet 31: 61–89

    PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K, and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H and Tanaka A (1996) Differential expression of two hemA mRN As encoding glutamy 1-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110: 1223–1230

    PubMed  CAS  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Tsuji H, Inokuchi H, Okada K and Tanaka A (1997) The third member of the hemA family encoding glutamyl-rRNA reductase is primarily expressed in roots in Hordeum vulgare. Photosynth Res 53: 161–171

    CAS  Google Scholar 

  • Timko MP (1998) Pigment biosynthesis: Chlorophylls, heme, and carotenoids, In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds), Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria, pp. 403-420. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Mattijs JCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–161

    PubMed  CAS  Google Scholar 

  • Townley HE, Griffiths WT and Nugent JP (1998) A reappraisal of the mechanism of the photoenzyme protochlorophyllide reductase based on studies with the heterologously expressed protein. FEBS Lett 422: 19–22

    PubMed  CAS  Google Scholar 

  • Valentin K, Fischer S, and Cattolico RA (1998) The chloroplast bchl gene encodes a subunit of magnesium chelatase in the marine heterokont alga Heterosigma carterae. Eur J Phycol 33: 113–120

    Google Scholar 

  • Valera V, Fung M, Wessler A and Richards WR (1987) Synthesis of 4R-and 4S-tritium labeled NADPH for determination of the coenzyme steriospecificity of NADPH:protochlorophyllide oxidoreductase. Biochem Biophys Res Commun 148: 515–520

    PubMed  CAS  Google Scholar 

  • Vesk M and Jeffrey SW (1987) Ultrastructure and pigments of two strains of the picoplanktonic alga Pelagococcus subvirides (Chrysophyceae). J Phycol 23: 322–336.

    CAS  Google Scholar 

  • von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • von Wettstein D, Henningsen KW, Boynton JE, Kannangara CG, and Nielsen OF (1971) The genic control of chloroplast development in barley. In: Boardman NK, Linnane AW, Smillie RM (eds) Autonomy and Biogenesis of Mitochondria and Chloroplasts, pp 205-223. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Walker CJ and Griffiths WT (1988) Protochlorophyllide reductase: A flavoprotein? FEBS Lett 239: 259–262

    CAS  Google Scholar 

  • Walker CJ and Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327: 321–333

    PubMed  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts: substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95: 1189–1196

    PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599–602

    PubMed  CAS  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethylester oxidative cyclase system. Biochem J 276: 691–697

    PubMed  CAS  Google Scholar 

  • Wang W-Y (1978) Genetic control of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Int Rev Cytol Suppl 8: 335–364

    PubMed  CAS  Google Scholar 

  • Wang W-Y, Wang WL, Boynton JE and Gillham NE (1974) Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium-protoporphyrin. J Cell Biol 63: 806–823

    PubMed  CAS  Google Scholar 

  • Wang W-Y, Boynton JE, Gillham NE and Gough S (1975) Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of a mutant affecting synthesis of δ-aminolevulinic acid. Cell 6: 75–84

    PubMed  CAS  Google Scholar 

  • Wang W-Y, Boynton JE and Gillham NE (1977) Genetic control of chlorophyll biosynthesis. Effect of increased δ-aminolevulinic acid synthesis on the phenotype of they-y-1 mutant of Chlamydomonas. Mol Gen Genet 152: 7–12

    CAS  Google Scholar 

  • Wang W-Y, Huang D-D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from lightgrown Chlamydomonas reinhardtii cells. Plant Physiol 74: 569–575

    PubMed  CAS  Google Scholar 

  • Weinstein JD and Beale SI (1985) Enzyatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237: 454–464

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1987) Formation of δaminolevulinic acid from glutamic acid in algal extracts: separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244–250

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heme inhibition of δaminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657–665

    PubMed  CAS  Google Scholar 

  • Wenzlau JM and Berry-Lowe SL (1995) Nucleotide sequence of a gene encoding glumate 1-semialdehyde aminotransferase (U10278) from Arabidopsisthaliana ‘Columbia.’ Plant Physiol 108: 1342

    Google Scholar 

  • Whyte BJ and Castelfranco PA (1993) Further observations on the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Biochem J 290: 355–0359

    PubMed  CAS  Google Scholar 

  • Whyte BJ and Griffiths WT (1993) 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J 291: 939–944

    PubMed  CAS  Google Scholar 

  • Wilhelm C (1990) The biochemistry and physiology of lightharvesting processes in chlorophyll b- and chlorophyll ccontaining algae. Plant Physiol Biochem 28: 293–306

    CAS  Google Scholar 

  • Willows RD, Gibson LCD, Kannangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438–443

    PubMed  CAS  Google Scholar 

  • Wilks HM and Timko MP (1995) A light-dependent complementation system for analysis ofNADPH:protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92: 724–728

    PubMed  CAS  Google Scholar 

  • Witty, M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant PCR. Plant Physiol 103: 139–147

    PubMed  CAS  Google Scholar 

  • Zapata M and Garrido JL (1997) Occurrence of phytylated chlorophyll c in Isochrysis sp. (clone T-ISO) (Prymnesiophyceae). J Phycol 33: 209–214

    CAS  Google Scholar 

  • Zhang L and Guarente L (1995) Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J 14: 313–320

    PubMed  CAS  Google Scholar 

  • Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulatus. Cell 37: 937–947

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Timko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cahoon, A.B., Timko, M.P. (2003). Biochemistry and Regulation of Chlorophyll Biosynthesis. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics