Skip to main content

Removal of Rare Earth Elements and Precious Metal Species by Biosorption

  • Chapter
  • First Online:

Abstract

In Rare Earth Elements (REE) or Precious Metal Species (PMS) removal many types of biological phenomena can take place, such as biosorption, bioaccumulation, resistance/detoxification mechanisms, and direct or indirect utilization in the microbial metabolism. The high demand for the REE or PMS implies demand on increased production of ores containing REE or PMS (i.e. mining) and recycling of solutions to recover the elements contained in waste. But the use of REE and PMS in many anthropogenic applications and devices has led to an increased of public and environment exposure. The aim of this chapter is to compare under different operating conditions, the biosorption capacities of various microbial species and natural by-products for rare earth elements, to investigate the involved sorption mechanisms and to evaluate the potential industrial use of this process to metal ion removal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmady-Asbchin S, Andrès Y, Gérente C, Le Cloirec P (2009) Natural seaweed waste as sorbent for heavy metal removal from solution. Environ Technol 30:755–762

    Article  PubMed  CAS  Google Scholar 

  • Andrès Y, MacCordick HJ, Hubert JC (1993) Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl Microbiol Biotechnol 39:413–417

    Article  Google Scholar 

  • Andrès Y, MacCordick HJ, Hubert JC (1995) Selective biosorption of thorium ions by an immobilized mycobacterial biomass. Appl Microbiol Biotechnol 44:271–276

    Article  Google Scholar 

  • Andrès Y, Thouand G, Boualam M, Mergeay M (2000) Factors influencing the biosorption of gadolinium by micro-organisms and sand. Appl Microbiol Biotechnol 54:262–267

    Article  PubMed  Google Scholar 

  • Andrès Y, Texier AC, Le Cloire P (2003) Rare earth elements removal by microbial biosorption: a review. Environ Technol 24:1367–1375

    Article  PubMed  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24:129–135

    CAS  Google Scholar 

  • Ben Omar N, Lardi Merroun M, Arias Penalver JM, Gonzalez Munoz T (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35:2277–2283

    Article  PubMed  CAS  Google Scholar 

  • Brierley CL (1993) Environmental biotechnology applications in mining. In: Adelaide A (ed) Biomine’93-conference proceedings. Australian Mineral Foundation, Linden Park, SA, Australia, pp 62–71

    Google Scholar 

  • Brierley JA, Brierley CL, Goyak GM (1986) AMT-Bioclaim: a new wastewater treatment and metal-recovery technology. In: Lawrence RW, Branion RMR, Ebner GG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, p 291

    Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Chassary P, Vincent T, Sanchez Marcano J, Macaskie LE, Guibal E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  PubMed  CAS  Google Scholar 

  • Dahlquist FW (1978) Scatchard and Hill plots. Methods Enzymol 48:270–299

    Article  PubMed  CAS  Google Scholar 

  • Daughney CJ, Fowle DA, Fortin D (2001) The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta 65:1025–1035

    Article  CAS  Google Scholar 

  • de Rome L, Gadd G (1987) Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl Microbiol Biotechnol 26:84–90

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995) Rare earth elements and plant growth: 1. Effects of lanthanum and cerium on root elongation of corn and mungbean. J Plant Nutr 18:1963–1976

    Article  CAS  Google Scholar 

  • Diniz V, Volesky B (2005) Biosorption of La, Eu and Yb using Sargassum biomass. Water Res 39:239–247

    Article  PubMed  CAS  Google Scholar 

  • Diniz V, Weber ME, Volesky B, Naja G (2008) Column biosorption of lanthanum and europium by Sargassum. Water Res 42:363–371

    Google Scholar 

  • Dziwulska U, Bajguz A, Godlewska-Żyłkiewicz B (2004) The use of algae Chlorella vulgaris immobilized on Cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal Lett 37:2189–2203

    Article  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis T (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmoschim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux, JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

    Article  PubMed  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Peralta-Videa JR, Parsons JG, Delgado M (2004) Binding of erbium(III) and holmium(III) to native and chemically modified alfalfa biomass: a spectroscopic investigation. Microchem J 76:65–76

    Article  CAS  Google Scholar 

  • Gattavecchia E, Ghini S, Tonelli D (1989) Fallout from Tchernobyl in Bologna and its environs: radioactivity in airborne, rain water and soil. J Radioanal Nucl Chem 133:407–419

    Article  CAS  Google Scholar 

  • Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127

    Article  CAS  Google Scholar 

  • Glombitza F; Eckardt L, Hummel A (1995) Fundamentals of the application of biosorption to the separation of uranium from mining drainage waters. In: Bacterial interactions with heavy metals in the environment. VITO/MT/95023, Belgium, pp 36–37

    Google Scholar 

  • Godlewska-Żyłkiewicz B (2003) Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochim Acta Part B Atom Spectrosc 58:1531–1540

    Article  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  • Guibal E, Larkin A, Vincent T, Tobin JM (1999) Chitosan sorbents for platinum sorption from dilute solutions. Ind Eng Chem Res 38:4011–4022

    Article  CAS  Google Scholar 

  • Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104:85–95

    PubMed  CAS  Google Scholar 

  • Huang SF, Li ZY, Wang XQ, Wang QX, Hu FF (2010) Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster. Ecotoxicol Environ Saf 73:89–93

    Article  PubMed  CAS  Google Scholar 

  • Karavaiko GI, Kareva AS, Avakian ZA, Zakharova VI, Korenevsky AA (1996) Biosorption of scandium and yttrium from solutions. Biotechnol Lett 18:1291–1296

    Article  CAS  Google Scholar 

  • Kawagoe M, Hirasawa F, Wang SC, Liu Y, Ueno Y, Sugiyama Y (2005) Orally administrated rare earth element cerium induces metallothionein synthesis and increases glutathione in the mouse liver. Life Sci 77:922–937

    Article  PubMed  CAS  Google Scholar 

  • Kielhorn J, Melber C, Keller D, Mangelsdorf I (2002) Palladium—a review of exposure and effects to human health. Int J Hyg Environ Health 205:417–432

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Shida R, Hasegawa T, Satoh M, Seko Y, Tohyama C, Kuroda J, Shibata N, Imura N, Himeno S (2005) Induction of hepatic metallo-thionein by trivalent cerium: role of interleukin-6. Biol Pharm Bull 28:1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kümmerer K, Helmers E (2000) Hospital effluents as a source of gadolinium in the aquatic environment. Environ Sci Technol 34:573–577

    Article  Google Scholar 

  • Ledin M, Pedersen K, Allard B (1997) Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd, and Hg by Pseudomonas putida. Water Air Soil Pollut 93:367–381

    CAS  Google Scholar 

  • Li Shoujian, He Jiang, Yi Changhou, Li Yankun (1996) The study of using waste brewer’s east as a new sorbent for accumulation of lanthanides. J Sichuan University (Nat Sci Ed) 33:568–574

    CAS  Google Scholar 

  • Liang T, Ding S, Song W, Chong Z, Zhang C, Li H (2008) A review of fractionations of rare earth elements in plants. J Rare Earths 26:7–15

    Article  Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A 61:761–765

    Article  Google Scholar 

  • Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biosorption of precious metals. Biotechnol Adv 25:264–71

    Article  PubMed  CAS  Google Scholar 

  • Markai S, Andrès Y, Montavon G, Grambow B (2003) Study of the interaction between europium (III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility. J Coll Interface Sci 262:351–361

    Article  CAS  Google Scholar 

  • Merget R, Rosner G (2001) Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci Total Env 270:165–173

    Article  CAS  Google Scholar 

  • Merroun ML, Ben Chekroun K, Arias JM, Gonzalez-Munoz MT (2003) Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere 52:113–120

    Article  PubMed  CAS  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailley GW (1986) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    Google Scholar 

  • Ngwenya BT, Mosselmans JFW, Magennis M, Atkinson KD, Tourney J, Olive V, Ellam RM (2009) Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells. Geochim Cosmochim Acta 73:3134–3147

    Article  CAS  Google Scholar 

  • Palmieri MC, O Garcia Jr, Melnikov P (2000) Neodymium biosorption from acidic solutions in batch system. Process Biochem 36:441–444

    Google Scholar 

  • Palmieri MC, Volesky B, O Garcia Jr (2002) Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy 67:31–36

    Article  CAS  Google Scholar 

  • Parsons JG, Gardea-Torresdey JL, Tiemann KJ, Gonzalez JH, Peralta-Videa JR, Gomez E, Herrera I (2002) Absorption and emission spectroscopic investigation of the phytoextraction of europium(III) nitrate from aqueous solutions by alfalfa biomass. Microchem J 71:175–183

    Article  CAS  Google Scholar 

  • Parsons JG, Peralta-Videa JR, Tiemann KJ, Saupe GB, Gardea-Torresdey JL (2005) Use of chemical modification and spectroscopic techniques to determine the binding and coordination of gadolinium(III) and neodymium(III) ions by alfalfa biomass. Talanta 67:34–45

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K, Albinsson Y (1991) Effect of cell number, pH and lanthanide concentration on the sorption of promethium by Shewanella putrefaciens. Radiochim Acta 54:91–95

    CAS  Google Scholar 

  • Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresour Technol 80:211–215

    Article  PubMed  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (2000) Biosorption of U, La, Pr, Nd, Eu, and Dy by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 25:1–7

    Article  CAS  Google Scholar 

  • Rauch S, Morrison GM (2008) Environmental relevance of the platinum-group elements. Elements 4:259–263

    Article  CAS  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  PubMed  CAS  Google Scholar 

  • Sert Ş, Kütahyali C, İnan S, Talip Z, Çetinkaya B, Eral M (2008) Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 90:13–18

    Article  CAS  Google Scholar 

  • Texier AC, Andrès Y, Le Cloirec P (1997) Selective Biosorption of Lanthanide (La, Eu) ions by Mycobacterium Smegmatis. Environ Technol 18:835–841

    Article  CAS  Google Scholar 

  • Texier AC, Andrès Y, Le Cloirec P (1999) Selective Biosorption of Lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol 33:489–495

    Article  CAS  Google Scholar 

  • Texier AC, Andrès Y, Illemassene M, Le Cloirec P (2000a) Characterization of lanthanide ions binding sites in the cell wall of Pseudomonas aeruginosa. Environ Sci Technol 34:610–615

    Article  CAS  Google Scholar 

  • Texier AC, Andrès Y, Le Cloirec P (2000b) Selective biosorption of lanthanide (La, Eu, Yb) ions by an immobilized bacterial biomass. Wat Sci Technol 42:91–94

    CAS  Google Scholar 

  • Texier AC, Andrès Y Faur-Brasquet C, Le Cloirec P (2002) Fixed-bed study for lanthanide (La, Eu, Yb) ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization. Chemosphere 47:333–342

    Article  PubMed  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    PubMed  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1987) Influence of anions on metal adsorption by Rhizopus arrhizus biomass. Biotechnol Bioeng 30:882–886

    Article  PubMed  CAS  Google Scholar 

  • Torres E, Mata YN, Blázquez ML, Muñoz JA, González F, Ballester A (2005) Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir 21:7951–7958

    Article  PubMed  CAS  Google Scholar 

  • Tsezos M (1986) Adsorption by microbial biomass as a process for removal of ions from process or waste solutions. In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. Ellis Horwood, Chister, pp 201–208

    Google Scholar 

  • Tsezos M, Remoudaki E, Angelatou V (1996) A study of the effects of competing ions on the biosorption of metals. Int Biodeter Biodeg 38:19–29

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Mahadevan A, Joshi UM, Balasubramanian R (2009) An examination of the uptake of lanthanum from aqueous solution by crab shell particles. Chem Eng J 152:116–121

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  Google Scholar 

  • Wang YG, Sun JX, Chen HM and Guo FQ (1997) Determination of the contents and distribution characteristics of REE in natural plants by NAA. J Radioanal Nuc Chem 219:99–103

    Article  CAS  Google Scholar 

  • Wei Z, Hong F, Yin M, Li H, Hu F, Zhao G, Wong JW (2005) Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem J 80:1–8

    Article  CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegrad 35:17–40

    Article  CAS  Google Scholar 

  • Yantaseea W, Fryxell GE, Addleman RS, Wiacek RJ, Koonsiripaiboon V, Pattamakomsan K, Sukwarotwat V, Xub J, Raymond KN (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J Hazard Mater 168:1233–1238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Andrès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Andrès, Y., Gérente, C. (2011). Removal of Rare Earth Elements and Precious Metal Species by Biosorption. In: Kotrba, P., Mackova, M., Macek, T. (eds) Microbial Biosorption of Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0443-5_8

Download citation

Publish with us

Policies and ethics