Skip to main content

Cereal Landraces for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Modern agriculture and conventional breeding and the liberal use of high inputs has resulted in the loss of genetic diversity and the stagnation of yields in cereals in less favourable areas. Increasingly landraces are being replaced by modern cultivars which are less resilient to pests, diseases and abiotic stresses and thereby losing a valuable source of germplasm for meeting the future needs of sustainable agriculture in the context of climate change. Where landraces persist there is concern that their potential is not fully realised. Much effort has gone into collecting, organising, studying and analysing landraces recently and we review the current status and potential for their improved deployment and exploitation, and incorporation of their positive qualities into new cultivars or populations for more sustainable agricultural production. In particular their potential as sources of novel disease and abiotic stress resistance genes or combination of genes if deployed appropriately, of phytonutrients accompanied with optimal micronutrient concentrations which can help alleviate aging-related and chronic diseases, and of nutrient use efficiency traits. We discuss the place of landraces in the origin of modern cereal crops and breeding of elite cereal cultivars, the importance of on-farm and ex situ diversity conservation; how modern genotyping approaches can help both conservation and exploitation; the importance of different phenotyping approaches; and whether legal issues associated with landrace marketing and utilisation need addressing. In this review of the current status and prospects for landraces of cereals in the context of sustainable agriculture, the major points are the following: (1) Landraces have very rich and complex ancestry representing variation in response to many diverse stresses and are vast resources for the development of future crops deriving many sustainable traits from their heritage. (2) There are many germplasm collections of landraces of the major cereals worldwide exhibiting much variation in valuable morphological, agronomic and biochemical traits. The germplasm has been characterised to variable degrees and in many different ways including molecular markers which can assist selection. (3) Much of this germplasm is being maintained both in long-term storage and on farm where it continues to evolve, both of which have their merits and problems. There is much concern about loss of variation, identification, description and accessibility of accessions despite international strategies for addressing these issues. (4) Developments in genotyping technologies are making the variation available in landraces ever more accessible. However, high quality, extensive and detailed, relevant and appropriate phenotyping needs to be associated with the genotyping to enable it to be exploited successfully. We also need to understand the complexity of the genetics of these desirable traits in order to develop new germplasm. (5) Nutrient use efficiency is a very important criterion for sustainability. Landrace material offers a potential source for crop improvement although these traits are highly interactive with their environment, particularly developmental stage, soil conditions and other organisms affecting roots and their environment. (6) Landraces are also a potential source of traits for improved nutrition of cereal crops, particularly antioxidants, phenolics in general, carotenoids and tocol in particular. They also have the potential to improve mineral content, particularly iron and zinc, if these traits can be successfully transferred to improved varieties. (7) Landraces have been shown to be valuable sources of resistance to pathogens and there is more to be gained from such sources. There is also potential, largely unrealised, for disease tolerance and resistance or tolerance of pest and various abiotic stresses too including to toxic environments. (8) Single gene traits are generally easily transferred from landrace germplasm to modern cultivars, but most of the desirable traits characteristic of landraces are complex and difficult to express in different genetic backgrounds. Maintaining these characteristics in heterogeneous landraces is also problematic. Breeding, selection and deployment methods appropriate to these objectives should be used rather than those used for high input intensive agriculture plant breeding. (9) Participatory plant breeding and variety selection has proven more successful than the approach used in high input breeding programmes for landrace improvement in stress-prone environments where sustainable approaches are a high priority. Despite being more complex to carry out, it not only delivers improved germplasm, but also aids uptake and communication between farmers, researchers and advisors for the benefit of all. (10) Previous seed trade legislation was designed primarily to protect trade and return royalty income to modern plant breeders with expensive programmes to fund. As the desirability of using landraces becomes more apparent to achieve greater sustainability, legislation changes are being made to facilitate this trade too. However, more changes are needed to promote the exploitation of diversity in landraces and encourage their use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdellaoui R., M’Hamed H.C., Naceur M.B., Bettaïeb-Kaab L., Hamida J.B. (2007) Morpho-physiological and molecular characterization of some Tunisian barley ecotypes, Asian J. Plant Sci. 6, 261–268.

    CAS  Google Scholar 

  • Abo-Elenin R.A., Heakal M.S., Gomaa A.S., Moseman J.G. (1981) Studies on salt tolerance in barley and wheat. Source of tolerance in barley germplasm, Barley Genet. IV, 402–409.

    Google Scholar 

  • Acevedo E., Fereres E. (1993) Resistance to abiotic stresses. in: Hayward M.D., Osemark N.O., Romagosa I. (Eds.), Plant Breeding and Prospects, Chapman & Hall, London, UK, pp. 406–421.

    Google Scholar 

  • Adom K.K., Liu R.H. (2002) Antioxidant activity of grains, J. Agr. Food Chem. 50, 6182–6187.

    CAS  Google Scholar 

  • Afanasenko O.S., Terentyeva I.A., Makarova I.N. (2000) Landraces from Peru – new sources of resistance to net blotch of barley, Proceedings of the 8th International Barley Genetics Symposium, Adelaide, October 22–27 2000, Vol. II, pp. 71–72, Adelaide University, Australia.

    Google Scholar 

  • Akar T., Özgen M. (2007) Genetic Diversity in Turkish Durum Wheat Landraces, in: Wheat Production in Stressed Environments, Springer, Netherlands, 12, pp. 753–760.

    Google Scholar 

  • Akar T., Francia E., Tondelli A., Rlzza F., Stanea A.M., Pecchioni N. (2009) Marker-assisted characterization of highly Frost Tolerant Barley (Hordeum vulgare L.) Genotypes, Plant Breeding 128, 381–386.

    Google Scholar 

  • Akhkha A., Clarke D.D., Dominy P.J. (2003) Relative tolerances of wild and cultivated barley to infection by Blumeria graminis f.sp. hordei (Syn. Erysiphe graminis f.sp. hordei). II – the effects of infection on photosynthesis and respiration, Physiol. Mol. Plant. Path. 62, 347–354.

    CAS  Google Scholar 

  • Alamerew S., Chebotar S., Huang X., Röder M., Börner A. (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers, Genet. Resour. Crop Ev. 51, 559–567.

    CAS  Google Scholar 

  • Al Khanjari S., Hammer K., Buerkert A., Röder M.S. (2007) Molecular diversity of Omani wheat revealed by microsatellites: II. Hexaploid landraces, Genet. Resour. Crop Ev. 54, 1407–1417.

    Google Scholar 

  • Alemayehu F., Parlevliet J.E. (1997) Variation between and within barley landraces, Euphytica 94, 183–189.

    Google Scholar 

  • Allard R.W., Bradshaw A.D. (1964) Implications of genotype-environmental interactions in applied plant breeding, Crop Sci. 4, 503–508.

    Google Scholar 

  • Almekinders C.J.M., Louwaars N.P., de Bruijn G.H. (1994) Local seed systems and their importance for an improved seed supply in developing countries, Euphytica 78, 207–216.

    Google Scholar 

  • Anderson J.B., Torp J. (1986) Quantitative analysis of the early powdery mildew infection stages on resistant barley genotypes, J. Phytopathol. 115, 173–185.

    Google Scholar 

  • Andrade V., dos Santos T.M.M., Afonso Morales D., Costa G., Pinheiro de Carvalho M.A.A. (2007) Evaluation of wheat germplasm at the Madeira and Canary Archipelagos, using a single molecular marker. A rapid screening method for durum wheat identification, Cereal Res. Commun. 35, 1397–1404.

    Google Scholar 

  • Anikster Y., Noy-Meir I. (1991) The wild-wheat field laboratory at Ammiad, Israel J. Bot. 40, 351–362.

    Google Scholar 

  • Anikster Y., Wahl I. (1979) Coevolution of rust fungi on Gramineae and Liliaceae and their hosts, Ann. Rev. Phytopathol. 117, 367–430.

    Google Scholar 

  • Anikster Y., Manisterski J., Long D.L., Leonard K.J. (2005) Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel, Plant Dis. 89, 55–62.

    Google Scholar 

  • Aniol A., Madej L. (1996) Genetic variation for aluminum tolerance in rye, Vortr. Pflanzenz, Chtg. 35, 201–211.

    Google Scholar 

  • Annichiarico P. (2002) Defining adaptation strategies and yield stability targets in breeding programmes, in: Kang M.S. (Ed.), Quantitative genetics, genomics and plant breeding, CABI, Wallingford, UK, pp. 165–183.

    Google Scholar 

  • Annicchiarico P., Pecetti L. (1993) Contribution of some agronomic traits to durum wheat performance in a dry Mediterranean region of Northern Syria, Agronomie 13, 25–34.

    Google Scholar 

  • Annichiarico P., Pecetti L. (1998) Yield vs. morphophysiological trait-based criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria), Field Crop. Res. 59, 163–173.

    Google Scholar 

  • Anon. (1943) Annual Report, Wheat Sub-Station, Gurdaspur, India, pp. 1–15.

    Google Scholar 

  • Arraiano L.S., Brown J.K.M. (2006) Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines, Plant Pathol. 55, 726–738.

    Google Scholar 

  • Asher M.J.C., Thomas C.E. (1983) The genetical control of incomplete forms of resistance to Erysiphe graminis in spring barley, Ann. Appl. Biol. 103, 149–156.

    Google Scholar 

  • Asher M.J.C., Thomas C.E. (1984) Components of partial resistance to Erysiphe graminis in spring barley, Plant Pathol. 33, 123–130.

    Google Scholar 

  • Asher M.J.C., Thomas C.E. (1987) The inheritance of mechanisms of partial resistance to Erysiphe graminis in spring barley, Plant Pathol. 36, 66–72.

    Google Scholar 

  • Assefa A., Labuschagne M.T. (2004) Phenotypic variation in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia, Biodivers. Conserv. 13, 1441–1451.

    Google Scholar 

  • Assefa A., Labuschagne M.T., Viljoen C.D. (2007) AFLP analysis of genetic relationships between barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia, Conserv. Genet. 8, 273–280.

    Google Scholar 

  • Attene G., Veronesi F. (1991) Observations on a Sardinian Population of Six Rowed Barley (Hordeum vulgare L.) (Italian), Riv. Agron. 25, 54–56.

    Google Scholar 

  • Autrique E., Nachit M.M., Monneveux P., Tanksley S.D., Sorrels M.E. (1996) Genetic diversity in durum wheat based on RFLPs, morpho-physiological traits, and coefficient of parentage, Crop Sci. 36, 735–742.

    Google Scholar 

  • Backes G., Hatz B., Jahoor A., Fischbeck G. (2003) RFLP diversity within and between major groups of barley in Europe, Plant Breeding 122, 291–299.

    CAS  Google Scholar 

  • Baigulova G.K., Pitonya A.A. (1979) Helminthosporium on barley, Uzbekiston Biologija Zurnali 4, 55–57.

    Google Scholar 

  • Bálint A.F., Kovacs G., Sutka J. (2003) Comparative studies on the seedling copper tolerance of various hexaploid wheat varieties and of spelt in soil with a high copper content and in hydroponic culture, Acta Agr. Hungarica 51, 199–203.

    Google Scholar 

  • Banttari E.E., Anderson W.H., Rasmusson D.C. (1975) Helminthosporium headblight resistance in six-row spring barleys, Plant Dis. Rep. 59, 274–277.

    Google Scholar 

  • Baon J.B., Smith S.E., Alston A.M. (1993) Mycorrhizal response of barley cultivars differing in P efficiency, Plant Soil 157, 97–105.

    Google Scholar 

  • Baresel J.P., Reents H.J., Zimmermann G. (2005) Field evaluation criteria for nitrogen uptake and nitrogen use efficiency, Proceedings of the Workshop on Organic Breeding Strategies and the Use of Molecular Markers Driebergen, The Netherlands, 17–19 January 2005, organised by COST860 SUSVAR Working Group 1 and ECO-PB; in collaboration with COST 851, Working Group 3.

    Google Scholar 

  • Baresel J.P., Zimmermann G., Reents H.J. (2008) Effects of genotype and environment on N uptake and N partitioning in organically grown winter wheat (Triticum aestivum. L.) in Germany, Euphytica (in press), DOI 10.1007/s10681-008-9718-1.

    Google Scholar 

  • Ben Amer I.M., Börner A., Röder M.S. (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers, Genet. Resour. Crop Ev. 48, 579–585.

    Google Scholar 

  • Bertholdsson N.O., Stoy V. (1995) Yields of Dry Matter and Nitrogen in Highly Diverging Genotypes of Winter Wheat in Relation to N-uptake and N-Utilisation, J. Agron. Crop Sci. 175, 285–295.

    CAS  Google Scholar 

  • Bingham I.J., Newton A.C., (2009) Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation, in: Walters D. (Ed.), Non-fungicidal approaches to disease control in crops, Blackwell Publishing Oxford, UK, pp. 142–161.

    Google Scholar 

  • Bisht I.S., Mithal S.K. (1991) Evaluation of barley germplasm for resistance against stripe disease, Indian Phytopathol. 44, 516–517.

    Google Scholar 

  • Bjørnstad A., Demissie Å., Kilian A., Kleinhofs A. (1997) The distinctness and diversity of Ethiopian barleys, Theor. Appl. Genet. 94, 514–521.

    Google Scholar 

  • Bjørnstad Å., Grønnerød S., Mac Key J., Tekauz A., Crossa J., Martens H. (2004) Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines ’Steudelli’ and ‘Jet’, analyzed by partial least squares regression and interval mapping, Hereditas 141, 166–179.

    PubMed  Google Scholar 

  • Blum A. (1988) Plant Breeding for Stress Environments. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bolan N.S. (1991) A critical review on the role of mycorrhizal fungi in uptake of phosphorus by plants, Plant Soil 134, 189–207.

    CAS  Google Scholar 

  • Bonman J.M., Bockelman H.E., Jin Y., Hijmans R.J., Gironella A. (2007) Geographic distribution of stem rust resistance in wheat landraces, Crop Sci. 47, 1955–1963.

    Google Scholar 

  • Bothmer R., Hintum T., Knuepffer H., Sato K. (2003) Diversity in barley (Hordeum vulgare), Developments in Plant Genetics and Breeding, Vol. 7, Elsevier Science B.V.

    Google Scholar 

  • Brandolini A. (1969) European races of maize, in: Proceedings of the 24th Corn and Sorghum Research Conference, pp. 34–48.

    Google Scholar 

  • Brandolini A., Brandolini A. (2001) Classification of Italian maize (Zea mays L.) germplasm, Plant Genet. Res. Newsl. 126, 1–11.

    Google Scholar 

  • Bregitzer P., Mornhinweg D.W., Obert D.E., Windes J. (2008) Registration of ‘RWA 1758’ Russian Wheat Aphid-Resistant Spring Barley, J. Plant Reg. 2, 5–9.

    Google Scholar 

  • Brites C., Trigo M.J., Santos C., Collar C., Rosell C.M. (2008) Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality, Food Bioprocess Technol. 226, 1205–1212.

    CAS  Google Scholar 

  • Bryngelsson S., Mannerstedt-Fogelfors B., Kamal-Eldin A., Andersson R., Dimberg L.H. (2002) Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L), J. Sci. Food Agr. 82, 606–614.

    CAS  Google Scholar 

  • Buchannon K.W., McDonald W.C. (1965) Sources of resistance in barley to Pyrenophora teres, Can. J. Plant Sci. 45, 189–193.

    Google Scholar 

  • Buckler IV E.S., Thornsberry J.M. (2002) Plant molecular diversity and applications to genomics, Curr. Opin. Plant Biol. 5, 107–111.

    PubMed  CAS  Google Scholar 

  • Caballero L., Martín L.M., Alvarez J.B. (2001) Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.), Theor. Appl. Genet. 103, 124–128.

    CAS  Google Scholar 

  • Caldwell K.S., Russell J., Langridge P., Powell W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare, Genetics 172, 557–567.

    PubMed  CAS  Google Scholar 

  • Camacho Villa T.C., Maxted N., Scholten M.A., Ford-Lloyd B.V. (2005) Defining and identifying crop landraces, Plant Genet. Res. 3, 373–384.

    Google Scholar 

  • Campos H., Cooper M., Habben J.E., Edmeades G.O., Schusser J.R. (2004) Improving drought tolerance in maize: a view from industry, Field Crop. Res. 90, 19–34.

    Google Scholar 

  • Canevara M.G., Romani M., Corbellini M., Perenzin M., Borghi B. (1994) Evolutionary Trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900, Eur. J. Agron. 3, 175–185.

    Google Scholar 

  • Cartwright B., Zarcinas B.A., Mayfield A.H. (1984) Toxic concentrations of boron in a red-brown earth at Gladstone. South Australia, Aust. J. Soil Res. 22, 261–272.

    CAS  Google Scholar 

  • Carver T.L.W. (1986) Histology of infection by Erysiphe graminis f. sp. hordei in spring barley lines with various levels of partial resistance, Plant Pathol. 35, 232–240.

    Google Scholar 

  • Carver B.F., Ownby J.D. (1995) Acid soil tolerance in wheat, Adv. Agron. 54, 117–173.

    CAS  Google Scholar 

  • CBD (1993) Convention on Biological Diversity, http://www.cbd.int/convention/convention.shtml.

  • Ceccarelli S. (1987) Yield potential and drought tolerance of segregating populations of barley in contrasting environments, Euphytica 36, 265–273.

    Google Scholar 

  • Ceccarelli S. (1994) Specific adaptation and breeding for marginal conditions, Euphytica 77, 205–219.

    Google Scholar 

  • Ceccarelli S. (1996) Adaptation to low high-input cultivation, Euphytica 92, 203–214.

    Google Scholar 

  • Ceccarelli S., Grando S. (1997) Increasing the efficiency of breeding through farmer participation, in: Ethics and Equity in Conservation and use of Genetics Resources for Sustainable Food Security, Proceeding of a workshop to develop guidelines for the CGIAR, 21–25, April 1997, Foz de Iguacu, Brazil, IPGRI, Rome, pp. 116–121.

    Google Scholar 

  • Ceccarelli S., Acevedo E., Grando S. (1991) Breeding for yield stability in unpredictable environments: single traits, interaction between traits and architecture of genotypes, Euphytica 56, 169–185.

    Google Scholar 

  • Ceccarelli S., Grando S., Van Leur J.A.G. (1987) Genetic diversity in barley landraces from Syria and Jordan, Euphytica 36, 389–405.

    Google Scholar 

  • Ceccarelli S., Piano E., Arcioni S. (1976) Evaluation of selected F4 and F5 families in a pedigree programme in barley (Hordeum vulgare L.), Abstracts of papers presented at the XX Annual Meeting, Italian Society for Agricultural Genetics, Papers on miscellaneous crop plants 30, 91.

    Google Scholar 

  • Chantret N., Salse J., Sabot F., Rahman S., Bellec A., Laubin B., Dubois I., Dossat C., Sourdille P., Joudrier P., Gautier M.-F., Cattolico L., Beckert M., Aubourg S., Weissenbach J., Caboche M., Bernard M., Leroy P., Chalhoub B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell 17, 1033–1045.

    PubMed  CAS  Google Scholar 

  • Chartrain L., Brading P.A., Brown J.K.M. (2005) Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide, Plant Pathol. 54, 134–143.

    CAS  Google Scholar 

  • Cherdouh A., Khelifi D., Carrillo J.M., Nieto-Taladriz M.T. (2005) The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars, Plant Breeding 124, 338–342.

    CAS  Google Scholar 

  • Clarke S.M., Hinchsiffe K.E., Haigh Z., Jones H., Pearce B., Wolfe M.S. Thomas J. (2006) A participatory approach to variety trials for organic systems, in: Proceedings of the Joint Organic Congress, Odense, Denmark, May 30–31, 2006.

    Google Scholar 

  • Cleveland D.A., Soleri D., Smith S.E. (1999) Farmer plant breeding from biological perspective: Implications for collaborative plant breeding, CIMMYT Economics Working Paper 99–10, CIMMYT, Mexico, DF, pp. 1–27.

    Google Scholar 

  • Clifford B.C. (1985) Barley leaf rust, The cereal rusts. Volume II, Diseases, distribution, epidemiology, and control, in: Roelfs A.P., Bushnell W.R. (Eds.), pp. 173–205.

    Google Scholar 

  • Coffman F.A. (1977) Oat history, identification and classification, USDA-ARS, Tech. Bull. 1516, Washington, DC.

    Google Scholar 

  • Comadran J., Russell J.R., van Eeuwijk F.A., Ceccarelli E.S., Grando S., Baum M., Stanca A.M., Pecchioni N., Mastrangelo A.M., Akar T., Al-Yassin A., Benbelkacem A., Choumane W., Ouabbou H., Dahan R., Bort J., Araus J.-L., Pswarayi A., Romagosa I., Hackett C.A., Thomas W.T.B. (2007) Mapping adaptation of barley to droughted environments, Euphytica 161, 35–45.

    Google Scholar 

  • Corazza L., Balmas V., Chilosi G., Nalli R. (1990) Evaluation of resistance of wheat and barley varieties to attack by pathogenic species of Fusarium, Sement Elette 36, 25–28.

    Google Scholar 

  • Cosic T., Poljak M., Custic M., Rengel Z. (1994) Aluminium tolerance of durum wheat germplasm, Euphytica 78, 239–243.

    CAS  Google Scholar 

  • Cox M.C., Qualset C.O., Rains D.W. (1985) Genetic variation for nitrogen assimilation and translocation in wheat. I. Dry matter and nitrogen accumulation, Crop Sci. 25, 430–435.

    Google Scholar 

  • Czembor J.H. (2002) Resistance to powdery mildew in selections from Moroccan barley landraces, Euphytica 125, 397–409.

    CAS  Google Scholar 

  • D’Amato F. (1989) The progress of Italian wheat production in the first half of the 20th century: contribution of breeders, Agr. Med. 119, 157–174.

    Google Scholar 

  • Damania A.B., Porceddu E. (1981) Screening YAR barley for disease resistance, Plant Genet. Res. Newsl. 48, 2–3.

    Google Scholar 

  • Davies B.E. (1994) Soil chemistry and bioavailability with special reference to trace elements, Plant and chemical elements, in: Farago M.E. (Ed.), VCH, Weinheim, pp. 2–30.

    Google Scholar 

  • de Freitas L.R.A., Ganança J.F.T., dos santos T.M.M, Pinheiro de Carvalho M.Â.A., Motto M., Clemente Vieira, M.R. (2005) The use of seed proteins, zein, in the evaluation of Madeira maize germplasm, Maydica 50, 105–112.

    Google Scholar 

  • De Sousa C.N.A. (1998) Classification of Brazilian wheat cultivars for aluminium toxicity in acid soils, Plant Breeding 117, 217–221.

    Google Scholar 

  • De Vita P., Nicosia O.L.D., Nigro F., Platani C., Riefolo C., Fonzo N.D., Cattivelli L. (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century, Eur. J. Agron. 26, 39–53.

    Google Scholar 

  • Del Pozo-Insfran D., Brenes C.H., Saldivar S.O.S., Talcott S.T. (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products, Food Res. Int. 39, 696–703.

    Google Scholar 

  • Demissie A., Bjørnstad Å. (1997) Geographical, altitude and agro-ecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: Implications to germplasm conservation, Genet. Resour. Crop Ev. 44, 43–55.

    Google Scholar 

  • Demissie A., Bjørnstad Å., Kleinhofs A. (1998) Restriction fragment length polymorphisms in landrace barleys from Ethiopia in relation to geographic, altitude, and agro-ecological factors, Crop Sci. 38, 237–243.

    Google Scholar 

  • Dencic S., Kastori R., Kobiljski B., Duggan B. (2000) Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions, Euphytica 113, 43–52.

    Google Scholar 

  • Desclaux D. (2005) Participatory plant breeding methods for organic cereals: review and perspectives, in: Proceedings for the Eco-Pb Congress, 17–19 January 2005, Driebergen, The Netherlands, pp. 1–6.

    Google Scholar 

  • Desclaux D., Chiffoleau Y., Dreyfus F., Mouret J.C. (2002) Cereal cultivars innovations adapted to organic production: a new challenge, 1st International Symposium on organic seed production and plant breeding, Berlin, 21–22 November 2002.

    Google Scholar 

  • Dhillon B.S., Dua R.P., Brahmi P., Bisht I.S. (2004) On farm conservation of plant genetic resources for food and agriculture, Curr. Sci. 87, 557–559.

    Google Scholar 

  • Diederichsen A. (2008) Assessments of genetic diversity within a world collection of cultivated hexaploid oat (Avena sativa L.) based on qualitative morphological characters, Genet. Resour. Crop Ev. 55, 419–440.

    Google Scholar 

  • Dobrovolskaya O., Saleh U., Malysheva-Otto L. (2005) Rationalising germplasm collections: a case study for wheat, Theor. Appl. Genet. 111, 1322–1329.

    PubMed  CAS  Google Scholar 

  • dos Santos T.M.M., Ganança F., Slaski J., Pinheiro de Carvalho M.Â.A. (2009) Characterization of wheat genetic resources from the Madeira archipelago, Genet. Resour. Crop Ev. 56, 363–370.

    Google Scholar 

  • dos Santos T.M.M., Pinheiro de Carvalho M.ÂA., Taylor G.J., Clemente Vieira M.R. (2005) Evaluation of the Madeiran wheat germplasm for aluminium resistance using aluminium-induced callose formation in root apices as a marker, Acta Physiol. Plant. 27, 297–302.

    Google Scholar 

  • Dreisigacker S., Zhang P., Warburton M.L., Skovmand B., Hoisington D., Melchinger A.E. (2005) Genetic Diversity among and within CIMMYT Wheat Landrace Accessions Investigated with SSRs and Implications for Plant Genetic Resources Management, Crop Sci. 45, 653–661.

    CAS  Google Scholar 

  • Du Toit F. (1987) Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Hemiptera: Aphididae), Cereal Res. Commun. 15, 175–179.

    Google Scholar 

  • Dubey P., Mishra B. (1992) Evaluation of barley varieties against covered smut, J. Res., Birsa Agric. Univ. 4, 179–180.

    Google Scholar 

  • Dunaevskij A.G., Sotnikov V.V., Bibik E.V. (1989) Research for sources of resistance to the main diseases in spring barley, Selektsiya i Semenovodstvo, Kiev 67, 14–19.

    Google Scholar 

  • Duvick D.N. (1992) Genetic contributions to advances in yield of US maize, Maydica 37, 69–79.

    Google Scholar 

  • Edwards J.H., Pedersen J.F., Kingery R.C. (1990) Heritability of root characteristics affecting mineral uptake in tall fescue, in: El Bassam N., Dambroth M., Loughmann B.C. (Eds.), Genetic aspects of plant mineral nutrition, Kluwer Academic Publishers.

    Google Scholar 

  • Engel J.M.M., Visser L. (2003) A Guide to Effective Management of Germplasm Collections, IPGRI Handbooks for Genebanks No. 6, IPGRI, Rome, Italy.

    Google Scholar 

  • Evans L.T. (1980) The natural history of crop yield, Am. Sci. 68, 388–397.

    Google Scholar 

  • Faiad M.G.R., Wetzel M.M.V.S., Salomao A.N., Cunha R. (1996) Evaluation of fungi in seed germplasm before long term storage, Seed Sci. Technol. 24, 505–511.

    Google Scholar 

  • FAO (1998) The State of the World’s Plant Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, 510 p.

    Google Scholar 

  • Fasoula D.A. (1990) Correlations between auto-, allo-, and nil-competition and their implications in plant breeding, Euphytica 50, 57–62.

    Google Scholar 

  • Fasoula D.A. (2004) Accurate whole-plant phenotyping: An important component for successful marker assisted selection (MAS), Genetic variation for Plant Breeding (17th EUCARPIA General Congress), in: Vollmann J., Grausgruber H., Ruckenbauer P. (Eds.), pp. 203–206.

    Google Scholar 

  • Fasoula V.A. (2008) Two novel whole-plant field phenotyping equations maximize selection efficlency, Modern Variety Breeding for Present and Future Needs, in: Prohens J., Badenes M.L. (Eds.), Proceedings 18th EUCARPIA General Congress, pp. 361–365.

    Google Scholar 

  • Fasoula V.A., Boerma H.R. (2007) Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars, Crop Sci. 47, 367–373.

    Google Scholar 

  • Fasoulas A.C., Fasoula V.A. (1995). The honeycomb selection designs, Plant Breeding Rev. 13, 87–139.

    Google Scholar 

  • Fasoula D.A., Fasoula V.A. (1997) Competitive ability and plant breeding, Plant Breeding Rev. 14, 89–138.

    Google Scholar 

  • Fasoula V.A., Fasoula D.A. (2000) Honeycomb Breeding: Principles and Applications, Plant Breeding Rev. 18, 177–250.

    CAS  Google Scholar 

  • Fasoula V.A., Fasoula D.A. (2002) Principles underlying genetic improvement for high and stable crop yield potential, Field Crop. Res. 75, 191–209.

    Google Scholar 

  • Fasoula V.A., Fasoula D.A. (2003) Partitioning Crop Yield into Genetic Components, in: Kang M.S. (Ed.), Handbook of Formulas and Software for Plant Geneticists and Breeders, Food Products Press, pp. 321–327.

    Google Scholar 

  • Feil B., Thiraporn R., Geisler G., Stamp P. (1990) Root traits of maize seedlings- indicators of nitrogen efficiency? Plant Soil 123, 155–159.

    CAS  Google Scholar 

  • Fekadu A., Parlevliet J.E. (1997) Variation between and within Ethiopian barley landraces, Euphytica 94, 183–189.

    Google Scholar 

  • Feldman M. (2001) Origin of cultivated wheat, in: Bonjean A.P., Angus W.J. (Eds.), The world wheat book, A history of wheat Breeding, Lavoisier Publishing, Paris, pp. 3–57.

    Google Scholar 

  • Feng Z.-Y., Zhang L.-L., Zhang Y.-Z., Ling H.-Q. (2006) Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet plateau of China detected by SSR analysis, Genet. Mol. Biol. 29, 330–338.

    CAS  Google Scholar 

  • Ferrio J.P., Alonso N., Voltas J., Araus J.L. (2007) Grain weight changes over time in ancient cereal crops: Potential roles of climate and genetic improvement, J. Cereal Sci. 44, 323–332.

    Google Scholar 

  • Feuillet C., Langridge P., Waugh R. (2007) Cereal breeding takes a walk on the wild side, Trends Genet. 24, 24–32.

    PubMed  Google Scholar 

  • Filippova G.G., Kashemirova L.A., Chiburova I.V. (1993) On seed testing in spring barley, Zashchita Rastenii Moskva 11, 29–30.

    Google Scholar 

  • Fischer R.A. (1981) Optimizing the use of water and nirogen through breeding of crops, Plant Soil 58, 249–278.

    Google Scholar 

  • Flint-Garcia S.A., Jampatong C., Darrah L.L., McMullen M.D. (2003) Quantitative trait locus analysis of stalk strength in four maize populations, Crop Sci. 43, 13–22.

    CAS  Google Scholar 

  • Foy C.D., Armiger W.H., Briggle L.W., Reid D.A. (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils, Agron. J. 57, 413–417.

    CAS  Google Scholar 

  • Frankel O.H., Brown A. (1984) Plant genetic resources today: A critical appraisal, in: Genetics: New Frontiers: Proceedings of the 15th International Congress of Genetics, 1984, New Delhi.

    Google Scholar 

  • Frankel O.H., Brown A.H.D., Burdon J.J. (1995) The conservation of plant diversity, Cambridge: Cambridge University Press.

    Google Scholar 

  • Freisleben R. (1940) Die phylogenetische Bedeutung asiatischer Gersten, Züchter 12, 257–272.

    Google Scholar 

  • Fu Y.B., Peterson G.W., Williams D., Richards K.W., Fetch J.M. (2005) Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm, Theor. Appl. Genet. 111, 530–539.

    PubMed  Google Scholar 

  • Fukuyama T., Yamaji S., Nakamura H. (1998) Differentiation of virulence in Rhynchosporium secalis in the Hokuriku district and sources of resistance to the pathogen, Breeding Sci. 48, 23–28.

    Google Scholar 

  • Gahoonia T.S., Nielsen N.E. (2004a) Barley genotypes with long root hairs sustain high grain yields in low-P field, Plant Soil 262, 55–62.

    CAS  Google Scholar 

  • Gahoonia T.S., Nielsen N.E. (2004b) Root traits as tools for creating phosphorus efficient crop varieties, Plant Soil 260, 47–57.

    Google Scholar 

  • Gaike M.V. (1970) Resistance of barley cultivars to net blotch, in: Genetic basis of disease resistance of field crops, Riga, pp. 70–74.

    Google Scholar 

  • Galili G., Galili S., Lewinsohn E., Tadmore Y. (2002) Genetic, molecular and genomic approaches to improve value of plant foods and feeds, Crit. Rev. Plant Sci. 21, 167–204.

    CAS  Google Scholar 

  • Gaut B.S., Long A.D. (2003) The lowdown on linkage disequilibrium, Plant Cell 15, 1502–1506.

    PubMed  CAS  Google Scholar 

  • Gauthier P., Gouesnard B., Dallard J., Redaelli R., Rebourg C., Charcosset A., Boyat A. (2002) RFLP diversity and relationships among traditional European maize populations, Theor. Appl. Genet. 105, 91–99.

    PubMed  CAS  Google Scholar 

  • Gauthier P., Gouesnard B., Dallard J., Redaelli R., Rebourg C., Charcosset A., Hamza S., Hamida W.B., Rebaï A., Harrabi M. (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits, Euphytica 135, 107–118.

    Google Scholar 

  • Geiger H.H., Heun M. (1989) Genetics of quantitative resistance to fungal diseases, Annu. Rev. Phytopathol. 27, 317–341.

    Google Scholar 

  • Gélinas P., McKinnon C.M. (2006) Effect of wheat variety, farming site and breadbaking on total phenolics, Int. J. Food Sci. Tech. 41, 329–332.

    Google Scholar 

  • Gilchrist S.L., Vivar F.H., Gonzalez C.F., Velazquez C. (1995) Selecting sources of resistance to Cochliobolus sativus under subtropical conditions and preliminary loss assessment, Rachis 14, 35–39.

    Google Scholar 

  • Goates B.J. (1986) Common bunt and dwarf bunt. Chapter 2, in: Wilcoxson R.D., Saaru E.E. (Eds.), Bunt and Smut Diseases of Wheat: Concepts and Methods of Disease Management, Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Goldberg A.D., Allis C.D., Bernstein E. (2007) Epigenetics: A Landscape takes shape, Cell 128, 635–638.

    PubMed  CAS  Google Scholar 

  • Goodman M.M., Paterniani E. (1969) The races of maize: III. Choices of appropriate characters for racial classification, Econ. Bot. 23, 265–273.

    Google Scholar 

  • Gregová E., Hermuth J., Kraic J., Dotlacil L. (1999) Protein heterogeneity in European wheat landraces and obselete cultivars, Genet. Resour. Crop Ev. 46, 521–528.

    Google Scholar 

  • Gregová E., Hermuth J., Kraic J., Dotlacil L. (2004) Protein heterogeneity in European wheat landraces and obsolete cultivars: Additional information, Genet. Resour. Crop Ev. 51, 569–575.

    Google Scholar 

  • Gregová E., Hermuth J., Kraic J., Dotlacil L. (2006) Protein heterogeneity in European wheat landraces and obsolete cultivars: Additional information II, Genet. Resour. Crop Ev. 53, 867–871.

    Google Scholar 

  • Grigor’ev M.F., Lukyanova M.V., Kabalkina N.A., Sidorov A.A. (1988) Sources of resistance in barley to Fusarium and Helminthosporium root rots, Sb. Nauchn. Trud. Prikl. Bot. Gen. Selektsii 122, 87–91.

    Google Scholar 

  • Grønnerød S., Marøy A.G., MacKey J., Tekauz A., Penner G.A., Bjørnstad A. (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668), Euphytica 126, 235–250.

    Google Scholar 

  • Gu X. (1989) Trials of several malting barley cultivars from German Federal Republic, Zuowu Pinzhong Ziyuan 1, 34–35.

    Google Scholar 

  • Gudu S., Maina S.M., Onkware A.O., Ombakho G., Ligeyo D.O. (2001) Screening of Kenyan maize germplasm tolerance for tolerance to low pH and aluminium for use in acid soils of Kenya, Seventh Eastern and Southern Africa Regional Maize Conference, pp. 216–221.

    Google Scholar 

  • Gupta P.K., Rustgi S., Kulwal P.L. (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects, Plant Mol. Biol. 57, 461–485.

    CAS  Google Scholar 

  • Hammer K., Gladis T.H. (1996) Funktionen der Genbank des IPK Gatersleben bei der in situ – Erhaltung on farm, Schriften zu Genetischen Ressourcen 2, 83–89.

    Google Scholar 

  • Hammer K., Spahillar M. (1998) Burimet gjenetike te bimeve dhe agrobiodiversiteti, Buletini i Shkencave Bujqesore 3, 29–36.

    Google Scholar 

  • Hammer K., Diederichsen A., Spahillar M. (1999) Basic studies toward strategies for conservation of plant genetic resources, in: Serwinski J., Faberova I. (Eds.), Proc. technical meeting on the methodology of the FAO World Information and Early Warning System on Plant Genetic Resources, pp. 29–33, FAO, Rome, http://apps3.fao.org/wiews/Prague/Paper1.htm.

  • Hamza S., Hamida W.B., Rebai A., Harrabi M. (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits, Euphytica 135, 107–118.

    CAS  Google Scholar 

  • Hao C.Y., Zhang X.Y., Wang L.F., Dong Y.S., Shang X.W., Jia J.Z. (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China, Mol. Breeding 17, 69–77.

    CAS  Google Scholar 

  • Hare R.A. (1997) Characterisation and inheritance of adult plant stem rust resistance in durum wheat, Crop Sci. 37, 1094–1098.

    Google Scholar 

  • Harlan J.R. (1975) Our vanishing genetic resources, Science 188, 618–621.

    Google Scholar 

  • Harlan J.R. (1977) The origins of cereal agriculture in the Old World, in: Reed C.A. (Ed.), Origins of agriculture, Moulton Publ. The Hague, Netherlands, pp. 357–383.

    Google Scholar 

  • Hawkes J.G., Maxted N., Floyd-Lloyd B.V. (2002) The ex situ conservation of plant genetic resources, Kluwer, The Netherlands, pp. 1–16.

    Google Scholar 

  • Hede A.R., Skovmand B., López-Cesati J. (2001) Acid Soils and Aluminum Toxicity, Application of Physiology in Wheat Breeding, in: Reynolds M.P., Ortiz-Monasterio J.I., McNab A. (Eds.), Mexico, D.F.: CIMMYT, pp. 172–182.

    Google Scholar 

  • Hetrick B.A.D., Wilson G.W.T., Cox T.S. (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors – a synthesis, Can. J. Bot. 71, 512–518.

    Google Scholar 

  • Heuberger J.G.K., Horst W.J. (1995) Effect of root growth characteristics on nitrogen use efficiency of tropical maize (Zea mays) varieties, in: Jewell D.C., Waddington S.R., Ransom J.K., Pixley K.V. (Eds.), Maize research for stress environments, CIMMYT, Mexico D.F. (Mexico), pp. 44–48.

    Google Scholar 

  • Heun M. (1986) Quantitative differences in powdery mildew resistance among spring barley cultivars, J. Phytopathol. 115, 222–228.

    Google Scholar 

  • Heun M., Schäfer-Pregl R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. (1997) Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting, Science 278, 1312–1314.

    CAS  Google Scholar 

  • Hidalgo A., Brandolini A., Pompei C., Piscozzi R. (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.), J. Cereal Sci. 44, 182–193.

    CAS  Google Scholar 

  • Hill J.P., Johnston M.R., Velasco V.R, Brown W.M. (1995) Responses of selected barley lines to barley stripe rust in Bolivia, Ecuador and Germany, Phytopathology 85, 1040.

    Google Scholar 

  • Hintum T.J.L., Knüpffer H. (1995) Duplication within and between germplasm collections. I. Identification duplication on the basis of passport data, Genet. Resour. Crop Ev. 42, 1127–1133.

    Google Scholar 

  • Hiura U. (1960) Studies on the disease-resistance in barley. IV. Genetics of resistance to powdery mildew, Ber. Ohara Inst. Landwirtsch. Biol. Okayama Univ. 11, 235–300.

    Google Scholar 

  • Hoffmann W., Nover I. (1959) Ausgangsmaterial für die Züchtung mehltauresistenter Gersten, Z. Pflanzenzücht. 42, 68–78.

    Google Scholar 

  • Holly L. (2000) Strategic questions of conserving agro-biodiversity in Hungary, Proceedings of the Hungarian Plant Breeding Conference, Hungarian Academy of Sciences, Budapest, p. 18.

    Google Scholar 

  • Honecker L. (1938) Über die physiologische Spezialisierung des Gerstenmehltaus als Grundlage für die Immunitätszüchtung, Züchter 10, 169–181.

    Google Scholar 

  • Horst W.J., Puschel A.K., Schmohl N. (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensivity in maize, Plant Soil 192, 23–30.

    CAS  Google Scholar 

  • Hsam S.L.K., Zeller F.J. (2002) Breeding for Powdery Mildew Resistance in common wheat (Triticum aestivum L.), in: Bélanger R.R., Bushnell W.R., Dik A.J., Carver T.L.W. (Eds.), The powdery mildews: A comprehensive treatise, The American Phytopathological Society, St. Paul, MN, USA, pp. 219–238.

    Google Scholar 

  • Hubert K.H., Buertsmayr H.B. (2006) Development of Methods for Bunt Resistance Breeding for Organic Farming, Czech J. Genet. Plant Breeding 42, 66–71.

    Google Scholar 

  • Igrejas G., Guedes-Pinto H., Carnide V., Clement J., Branlard G. (2002) Genetical, biochemical and technological parameters associated with biscuit quality. II. Prediction using storage proteins and quality characteristics in a soft wheat population, J. Cereal Sci. 36, 187–197.

    CAS  Google Scholar 

  • IPGRI (1985) Descriptors for Wheat (Revised), IPGRI, Rome, Italy.

    Google Scholar 

  • IPGRI (2003) A Guide to Effective Management of Germplasm Collections, in: Engels J.M.M., Visser L. (Eds.), IPGRI Handbooks for Genebanks 6, IPGRI, Rome, Italy.

    Google Scholar 

  • Jackson P., Robertson M., Cooper M., Hammer G. (1996) The role of physiological understanding in plant breeding; from a breeding perspective, Field Crop. Res. 49, 11–37.

    Google Scholar 

  • Jaradat A.A., Shahid M. (2006) Population and multilocus isozyme structures in a barley landrace, Plant Genet. Res. Charact. Util. 4, 108–116.

    CAS  Google Scholar 

  • Jaradat A.A., Ajlouni M.M., Duwayri M.A. (1996) Genetic resources of cereals and their wild relatives in Jordan: revisited, in: Jaradat A.A. (Ed.), Plant Genetic Resources of Jordan, IPGR, Regional Office for West Asia and North Africa, Aleppo, Syria, pp. 55–75.

    Google Scholar 

  • Jaradat A.A., Shahid M., Al Maskri A.Y. (2004) Genetic Diversity in the Batini Barley Landrace from Oman: I. Spike and Seed Quantitative and Qualitative Traits, Crop Sci. 44, 304–315.

    Google Scholar 

  • Jilal A., Grando S., Henry R.J., Lee L.S., Rice N., Hill H., Baum M., Ceccarelli S. (2008) Genetic diversity of ICARDA’s worldwide barley landrace collection, Genet. Resour. Crop Ev. 2008, 1–10.

    Google Scholar 

  • Jin Y., Steffenson B.J., Bockelman H.E. (1995) Evaluation of cultivated and wild barley for resistance to pathotypes of Puccinia hordei with wide virulence, Genet. Resour. Crop Ev. 42, 1–6.

    Google Scholar 

  • Johnson V.A., Mattern P.J., Schmidt J.W. (1967) Nitrogen relations during spring growth in varieties of Triticum aestivum L. differing in grain protein content, Crop Sci. 7, 664–667.

    Google Scholar 

  • Jones H., Hinchsliffe K., Clarke S.M., Pearce B., Gibbon D., Lyon F., Harris F., Thomas J., Wolfe M.S. (2006) A participatory methodology for large scale field trials in the UK, in: Proceedings of the Joint Organic Congress, Odense, Denmark, May 30–31, 2006.

    Google Scholar 

  • Kandawa-Schulz M.A. (1996) Untersuchungen an Artbastarden von Wild- und Kulturgersten (Hordeum bulbosum x H. vulgare) zur Introgression züchterisch wichtiger Resistenzeigenschaften, Diss. Uni Rostock, Mathem.-Naturwiss. Fak.

    Google Scholar 

  • Kapulnik Y., Kushnir U. (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscolar mycorrhizal fungi, Euphytica 56, 27–36.

    Google Scholar 

  • Kapulnik Y., Feldmann M., Okon Y., Henis Y. (1985) Contribution of nitrogen fixed Azospirillum to the nutrition of spring wheat in Israel, Soil Biol. Biochem. 17, 509–515.

    Google Scholar 

  • Kapulnik Y., Okon Y., Henis Y. (1987) Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasiliense under field conditions, Biol. Fert. Soils 4, 27–35.

    Google Scholar 

  • Kapulnik Y., Sarig S., Nur I., Okon Y. (1983) Effect of Azospirillum inoculation on yield of field-grown wheat, Can. J. Microbiol. 29, 895–899.

    Google Scholar 

  • Kashiwazaki S., Ogawa K., Usugi T., Tsuchizaki T. (1989) Characterization of several strains of barley yellow mosaic virus, Ann. Phytopathol. Soc. Japan 55, 16–25.

    Google Scholar 

  • Katsiotis A., Germeier C.U., Koenig J., Legget M., Bondo L., Frese L., Bladenopoulos K., Ottoson F., Mavromatis A., Veteläinen M., Menexes G., Drossou A. (2009) Screening a European Avena landrace collection using morphological and molecular markers for quality and resistance breeding, in: Proceeding of the EUCARPIA Cereals Section, Lleida, Spain, November 13–17, 2006.

    Google Scholar 

  • Kebebew F., Tsehaye Y., McNeilly T. (2001) Diversity of durum wheat (Triticum durum Desf.) at in situ conservation sites in North Shewa and Bale, Ethiopia, J. Agric. Sci. Camb. 136, 383–392.

    Google Scholar 

  • Khatskevitch L.K., Benken A.A. (1990) Root and stem rots of cereals, Zashchita rastenii, Moskva 9, 14–15.

    Google Scholar 

  • Khokhlova A.P., Vershinina V.A., Lukyanova M.V., Terentyeva I.A. (1989) VIR Catalogue: Characteristics of susceptibility to loose smut, leaf rust and powdery mildew, VIR, St. Petersburg, 30 p.

    Google Scholar 

  • Kirdoglo E.K. (1990) Breeding barley for resistance to smut and leaf/stem diseases, Vestnik Selskokhozyaistvennoi Nauki Moskva 10, 98–104.

    Google Scholar 

  • Kmecl A., Mauch F., Winzeler H., Dudler R. (1995) Quantitative field resistance of wheat to powdery mildew and defence reactions at the seedling stage-identification of a potential marker, Physiol. Mol. Plant P. 47, 185–199.

    Google Scholar 

  • Kochian L.V., Pineros M.A., Hoekenga O.A. (2005) The physiology, genetics and molecular biology of plant aluminium resistance and toxicity, Plant Soil 274, 175–195.

    CAS  Google Scholar 

  • Kolodinska Brantestam A.K., Von Bothmer R., Dayteg C., Rashal I., Tuvesson S. Weibull J. (2004) Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic origin, Hereditas 141, 186–192.

    Google Scholar 

  • Kolodinska Brantestam A.K., Von Bothmer R., Rashal I., Weibull J. (2003) Changes in the genetic diversity of barley of Nordic and Baltic origin, studied by isozyme electrophoresis, Plant Genet. Res. Charact. Util. 1, 143–149.

    Google Scholar 

  • Kotali E. et al. (2008) 12th meeting of the Hellenic Scientific Society for Plant Breeding and Genetics, Naoussa 8–10 October 2008, p. 121.

    Google Scholar 

  • Kovács G. (2006a) Selection of field crop varieties suitable for organic farming, Biokontroll Hungária Kht. Budapest, p. 88.

    Google Scholar 

  • Kovács G. (2006b) The possible use of founder effect to produce locally adapted cereal varieties, in: Oestergard H., Fontaine L. (Eds.), Cereal Crop Diversity: Implications for production and products ITAB, Paris, France, pp. 68–70.

    Google Scholar 

  • Kovács G. (2008) Bread wheat composite crosses as a source modern landraces, NKTH, Budapest, Research Report, p. 95.

    Google Scholar 

  • Kovács G., Kótai C., Kanyó Z., Láng L., Nagyne K.R., Polgáár Z., Roszík P., Zsigrai G. (2006) Variety recommendation list for organic farmers, in: Kovács G. (Ed.), Selection of field crop varieties suitable for organic farming, Biokontroll Hungária Kht. Budapest, pp. 39–82 (in Hungarian).

    Google Scholar 

  • Kuhlmann H., Barraclough P.B., Weir A.H. (1989) Utilization of mineral nitrogen in the subsoil by winter wheat, Z. Pflanzenernähr. Bodenk. 152, 291–295.

    CAS  Google Scholar 

  • Kurilich A.C., Juvik J.A. (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays, J. Agr. Food Chem. 47, 1948–1955.

    CAS  Google Scholar 

  • Láng L. (2006) Improving the yield, adaptability and protein content of barley, wheat and spelt, in: Bed Z., Kovács G. (Eds.), Organic breeding and cultivation of cereals, Agroinform Publishing Ltd. Budapest, pp. 88–93.

    Google Scholar 

  • Laperche A., Devienne-Barret F., Maury O., Legouis J., Ney B. (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency, Theor. Appl. Genet. 113, 1131–1146.

    PubMed  CAS  Google Scholar 

  • Larsson H. (2006) Old cultural cereal varieties are broadening the genetic base for organic farming and will increase the quality for consumers, Proceedings of the ECO-PB Workshop: “Participatory Plant Breeding: Relevance for Organic Agriculture?”, La Besse, France 11–13 June 2006.

    Google Scholar 

  • Lehmann L., Bothmer R. von, Jorna M.L., Slootmaker L.A.J. (1988) Hordeum spontaneum and landraces as a gene resource for barley breeding. Cereal breeding related to integrated cereal production, Proceedings of the conference of the Cereal Section of EUCARPIA, Wageningen, Netherlands, 24–26 February 1988, pp. 190–194.

    Google Scholar 

  • Leur Van J.A.G. Pathology, Cereal Improvement Program Ann. Rep., 1988, pp. 122–130.

    Google Scholar 

  • Little R. (1988) Plant soil interactions at low pH, in: Problem Solving – The Genetic Approach, Commun. Soil Sci. Plan. Anal. 19, 1239–1257.

    CAS  Google Scholar 

  • Lukyanova M.V. (1990) New sources and donors for barley breeding, Byulleten Vsesoyuznogo Nauchno Issledovatel’skogo Instituta Rastenievodstva imeni N.I. Vavilova  201, 26–30.

    Google Scholar 

  • Lukyanova M.V., Terentyeva I.A. (1997) Catalogue of genetic collection of barley with identified genes of resistance to powdery mildew, 48 VIR, St. Petersburg, Russia.

    Google Scholar 

  • Luthra J.K., Verma R.S., Prabhu K.V. (1992) Development of isogenic lines in barley with reference to Puccinia striiformis West, in: Munck L. (Ed.), Barley Genet. VI, 622–625, Munksgaard Int. Publ. Ltd., Copenhagen, Denmark.

    Google Scholar 

  • Mamluk O.F., Nachit M.M. (1994) Sources of Resistance to Common Bunt (Tilletia foetida and T. caries) in Durum Wheat, J. Phytopathol. 142, 122–130.

    Google Scholar 

  • Manjunatha T., Bisht I.S., Bhat K.V., Singh B.P. (2007) Genetic diversity in barley (Hordeum vulgare L. ssp. vulgare) landraces from Uttaranchal Himalaya of India, Genet. Resour. Crop Ev. 54, 55–65.

    Google Scholar 

  • Mannerstedt-Fogelfors B. (2001) Antioxidants and lipids in oat cultivars as affected by environmental factors, Doctoral Thesis, Acta Universitatis Agriculturae Sueciae, Agraria 271, ISSN 1401–6249, Uppsala.

    Google Scholar 

  • Mano Y., Takeda K. (1995) Varietal variation and effects of some major genes on salt tolerance in barley seedlings, Okayama University, Bull. Res. Inst. Biores. 3, 71–81.

    Google Scholar 

  • Mano Y., Nakazumi H., Takeda K. (1996) Varietal variation in and effect of some major genes on salt tolerance at the germination stage in barley, Breeding Sci. 46, 227–233.

    Google Scholar 

  • Manske G.G.B. (1989) Genetical Analysis of VA mycorrhiza with spring wheat, Agr. Ecosyst. Environ. 29, 273–280.

    Google Scholar 

  • Manske G.G.B. (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat, in: El Bassam et al. (Eds.), Genetic aspects of plant mineral nutrition, 397–405, Kluwer Academic Publishers.

    Google Scholar 

  • Manske G.G.B., Lüttger A.B., Behl R.K., Vlek P.L.G. (1995) Nutrient Efficienca Based on VA Mycorrhizae (VAM) and total root length of Wheat Cultivars Grown in India, Angew. Bot. 69, 108–110.

    Google Scholar 

  • Mantzavinou A., Bebeli P.J., Kaltsikes P.J. (2005) Estimating genetic diversity in Greek durum wheat landraces with RAPD markers, Aust. J. Agr. Res. 56, 1355–1364.

    Google Scholar 

  • Martínez F., Rubiales D. (2002) Resistance to leaf rust in durum wheat cultivar Creso, Cereal Rusts and Powdery Mildews Bull. 30, 2002, http://www.crpmb.org/2002/1130martinez.

  • Martínez F.B., Niks R.E., Rubiales D. (2001a) Partial resistance to leaf rust in a collection of ancient Spanish barleys, Hereditas 135, 199–203.

    PubMed  Google Scholar 

  • Martínez F., Niks R.E., Moral A., Urbano J.M., Rubiales D. (2001b) Search for partial resistance to leaf rust in a collection of ancient Spanish wheats, Hereditas 135, 193–197.

    PubMed  Google Scholar 

  • Martínez F., Niks R.E., Singh R.P., Rubiales D. (2001c) Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust, Hereditas 135, 111–114.

    PubMed  Google Scholar 

  • Martos V., Royo C., Rharrabti Y., Garcia del Moral L.F. (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century, Field Crop. Res. 91, 107–116.

    Google Scholar 

  • Masum Akond A.S.M.G., Watanabe N. (2005) Genetic variation among Portuguese landraces of “Arrancada” wheat and Triticum petropavlovskyi by AFLP-based assessment, Genet. Resour. Crop Ev. 52, 619–628.

    Google Scholar 

  • Matsuoka Y., Vigouroux Y., Goodman M.M., Sanchez G.J., Buckler E., Doebley J. (2002) A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl Acad. Sci. (USA) 99, 6080–6084.

    CAS  Google Scholar 

  • Maxted N. (2003) Conserving the genetic resources of crop wild relatives in European Protected Areas, Biol. Conserv. 113, 411–417.

    Google Scholar 

  • McClintock B. (1984) The significance of the responses of the genome to challenge, Science 226, 792–801.

    PubMed  CAS  Google Scholar 

  • McIntosh R.A., Hart G.E., Devos K.M., Gale M.D., Rogers W.J. (1998) Catalogue of gene symbols for wheat, Vol. 5, in: Proc. 9th Int. Wheat Genet. Symp., Saskatchewan, Canada, pp. 134–138.

    Google Scholar 

  • Medini M., Hamza S., Rebai A., Baum M. (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers, Genet. Resour. Crop Ev. 52, 21–31.

    CAS  Google Scholar 

  • Miflin B. (2000) Crop Improvement in the 21st century, J. Exp. Bot. 51, 1–8.

    PubMed  CAS  Google Scholar 

  • Monasterio J.I., Graham R.D. (2000) Breeding for trace minerals in wheat, Food Nutr. Bull. 21, 393–396.

    Google Scholar 

  • Moore-Colyer R.J. (1995) Oats and oat production in history and pre-history, in: Welch R.W. (Ed.), The oat crop, Chapman & Hall, pp. 1–33.

    Google Scholar 

  • Moragues M., Garcia del Moral L.F., Moralejo M., Royo C. (2006a) Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mfeiterranean basin. I. Yield components, Field Crop. Res. 95, 194–205.

    Google Scholar 

  • Moragues M., Garcia del Moral L.F., Moralejo M., Royo C. (2006b) Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin. II. Biomass production and allocation, Field Crop. Res. 95, 182–193.

    Google Scholar 

  • Moreira P.M. (2006) Participatory maize breeding in Portugal. A case study, Acta Agron. Hungarica 54, 431–439.

    Google Scholar 

  • Morrell P.L., Toleno D.M., Lundy K.E., Clegg M.T. (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization, Proc. Natl Acad. Sci. (USA) 102, 2442–2447.

    Google Scholar 

  • Morris M.L., Bellon M.R. (2004) Participatory plant breeding research: Opportunities and challenges for the international crop improvement system, Euphytica 136, 21–35.

    Google Scholar 

  • Moseman J.G. (1955) Sources of resistance to powdery mildew of barley, Plant Dis. Rep. 39, 967–972.

    Google Scholar 

  • Moseman J.G., Craddock J.C. (1976) Genetic basis for barley germ-plasm conservation, in: Gaul (Ed.), Barley Genetics III, Proc. Third Int. Barley Genet. Sympos., Verlag Karl Thieming, Munich, pp. 51–57.

    Google Scholar 

  • Moseman J.G., Smith R.T. (1976) Breeding for multiple pest resistance, Barley Genet. III, Proc. 3rd Int. Barley Gen. Sympos., Garching, in: Gaul H. (Ed.), Verlag Karl Thieming, Munich, pp. 421–425.

    Google Scholar 

  • Motzo R., Giunta F. (2007) The effect of breeding on the phenology of Italian durum wheats: From landraces to modern cultivars, Eur. J. Agron. 26, 462–470.

    Google Scholar 

  • Munns R. (2005) Response of crops to salinity, in: International salinity forum - managing saline soils and water: science, technology and social issues, Riverside Convention Center, Riverside, California, USA, 25–28 April 2005, pp. 339–342, USDA-ARS Salinity Laboratory, Riverside, USA.

    Google Scholar 

  • Murphy K., Jones S. (2006) Breeding wheat for organic conditions, Nutritional value, http://www.organic-center.org/reportfiles/Jones%20Tilth%2006.pdf.

  • Murphy K.M., Reeves P.G., Jones S.S. (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars, Euphytica 163, 381–390.

    Google Scholar 

  • Nachit M.M., Ketata H., Yau S.K. (1988) Breeding durum wheat for stress environments of the Mediterranean region, in: Wittner. G. (Ed.), The future of cereals for human feeding and development of biotechnological research, Proc. Third Int. Symp. on durum wheat, Foggia, Italy, 5–7 May 1988.

    Google Scholar 

  • Nawrot M., Szarejko I., Maluszynski M. (2001) Barley mutants with increased tolerance to aluminium toxicity, Euphytica 120, 345–356.

    CAS  Google Scholar 

  • Negassa M. (1985a) Geographic distribution and genotypic diversity of resistance to powdery mildew of barley in Ethiopia, Hereditas 102, 113–121.

    Google Scholar 

  • Negassa M. (1985b) Genetics of resistance to powdery mildew in some Ethiopian barleys, Hereditas 102, 123–138.

    Google Scholar 

  • Nelson K.E., Burgess L.W. (1994) Reaction of Australian cultivars of oats and barley to infection by Fusarium graminearum Group 1, Aust. J. Exp. Agr. 34, 655–658.

    Google Scholar 

  • Nettevich E.D., Vlasenko N.M. (1985) Results of evaluating the barley collection in the central nonchernozem zone, Sbornik Nauchn. Trud. Prikl. Bot. Gen. Selektsii 95, 28–31.

    Google Scholar 

  • Nevo E. (1992) Origin, evolution, population genetics and resources of wild barley, Hordeum spontaneum, in the Fertile Crescent, in: Shewry P.R. (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford, UK, pp. 19–43.

    Google Scholar 

  • Newton A.C. (1990) Detection of components of partial resistance to mildew (Erysiphe graminisf. sp.hordei) incorporated into advanced breeding lines of barley using measurement of fungal cell wall sterol, Plant Pathol. 39, 598–602.

    Google Scholar 

  • Newton A.C., Thomas W.T.B. (1994) Detection of tolerance of barley cultivars to infection by powdery mildew (Erysiphe graminis f.sp. hordei), Euphytica 75, 179–187.

    Google Scholar 

  • Newton A.C., Begg G., Swanston J.S. (2009) Deployment of diversity for enhanced crop function, Ann. Appl. Biol. 154, 309–322.

    Google Scholar 

  • Newton A.C., Guy D.C., Gaunt R.E., Thomas W.T.B. (2000) The effect of powdery mildew inoculum pressure and fertilizer levels on disease tolerance in spring barley, J. Plant Dis. Prot. 107, 67–73.

    Google Scholar 

  • Newton A.C., Thomas W.T.B., Guy D.C., Gaunt R.E. (1998) The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley, Field Crop. Res. 55, 45–56.

    Google Scholar 

  • Niks R.E., Rubiales D. (2002) Detection of potentially durable resistance mechanisms in plants to specialised fungal pathogens, Euphytica 124, 201–216.

    CAS  Google Scholar 

  • Nordborg M., Borevitz J.O., Bergelson J., Berry C.C., Chory J., Hagenblad J., Kreitman M., Maloof J.N., Noyes T., Oefner P.J., Stahl E.A., Weigel D. (2002) The extent of linkage disequilibrium in Arabidopsis thaliana, Nat. Genet. 30, 190–193.

    CAS  Google Scholar 

  • Nover I., Lehmann C.O. (1966) Resistenzigenschaften im Gersten- und Weizensortiment Gatersleben 6. Prüfung von Gersten auf ihr Verhalten gegen Gelbrost (Puccinia striiformis West. syn. P. glumarum (Schm.) Erikss. et Henn.), Die Kulturpflanze 14, 257–262.

    Google Scholar 

  • Nover I., Lehmann C.O. (1970) Resistance characters in the barley and wheat collection gatersleben [Resistenzeigenschaften im Gersten - und Weizensortiment Gatersleben - 13. Prüfung von Wintergersten-Neuzugängen Auf Ihr Verhalten Gegen Gelbrost, Puccinia Striiformis West], Die Kulturpflanze 18, 107–108.

    Google Scholar 

  • Nover I., Lehmann C.O. (1974) Resistance in the barley and wheat collection Gatersleben. 18. Screening spring barleys for their reaction to leaf rust (Puccinia hordei Otth.) [Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben 18. Prüfung von Sommergersten auf ihr Verhalten gegen Zwergrost (Puccinia hordei Otth)], Die Kulturpflanze 22, 25–43.

    Google Scholar 

  • Nover I., Lehmann C.O. (1975) Resistance in the barley and wheat collection Gatersleben. 19. Testing spring barleys for their reaction to race 24 of stripe rust (Puccinia striiformis West.) [Resistenzeigenschaften im Gersten - und Weizensortiment Gatersleben - 19. Prüfung von Sommergersten auf ihr Verhalten gegen Gelbrost, Puccinia striiformis West., Rasse 24], Die Kulturpflanze 23, 75–81.

    Google Scholar 

  • Nover I., Mansfeld R. (1955) Resistenzeigenschaften im Gersten und Weizensortiment Gatersleben, Die Kulturpflanze 3, 105–113.

    Google Scholar 

  • Nover I., Mansfeld R. (1956) Resistenzeigenschaften im Gersten und Weizensortiment Gatersleben II, Die Kulturpflanze 4, 341–349.

    Google Scholar 

  • Nover I., Lehmann C.O., Seidenfaden A. (1976) Resistance in the Gatersleben barley and wheat collection 20. Testing of barley for reaction to loose smut Ustilago nuda, Kulturpflanze 24, 237–248.

    Google Scholar 

  • Oak M.D., Tamhankar S.A., Rao V.S., Bhosale S.B. (2004) Relationship of HMW, LMW glutenin subunits and γ -gliadins with gluten strength in Indian durum wheats, J. Plant Biochem. Biot. 13, 51–55.

    CAS  Google Scholar 

  • Okunowski I. (1990) Untersuchungen von Gersten aus dem Gaterslebener Weltsortiment auf Resistenz gegen Gelbrost Puccinia striiformis West. unter besonderer Berücksichtigung der Feldresistenz, Diss. Akad. Landwirtschaftswissenschaften, Berlin.

    Google Scholar 

  • Onishkova M.G. (1987) Immunity characteristics in Asian barley in the northern Kazakhstan, Selektsionno-Geneticheskie Issledovanijya pri Vyvedenii Novykh Sortov Polevykh Kul’tur Severnogo-Kazkhstana, 89–92.

    Google Scholar 

  • Oury F.-X., Leenhardt F., Rémésy C., Chanliaud E., Duperrier B., Balfourier F., Charmet G. (2006) Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat, Eur. J. Agron. 25, 177–185.

    CAS  Google Scholar 

  • Pagnotta M.A., Impiglia A., Tanzarella O.A., Nachit M.M., Porceddu E. (2004) Genetic variation of the durum wheat landrace Haurani from different agro-ecological regions, Genet. Resour. Crop Ev. 51, 863–869.

    CAS  Google Scholar 

  • Panfili G., Fratianni A., Irano M. (2004) Improved Normal-Phase High-Performance Liquid Chromatography Procedure for the Determination of Carotenoids in Cereals, J. Agr. Food Chem. 52, 6373–6377.

    CAS  Google Scholar 

  • Panga X.P., Lethaya J. (2000) Challenge of Timing Nitrogen Availability to Crop Nitrogen Requirements, Soil Sci. Soc. Am. J. 64, 247–253.

    Google Scholar 

  • Papa R., Attene G., Barcaccia G., Ohgata A., Konishi T. (1998) Genetic diversity in landrace populations of Hordeum vulgare L. from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits, Plant Breeding 117, 523–530.

    Google Scholar 

  • Papakosta D.K., Garianas A.A. (1991) Nitrogen and dry matter accumulation, remobilisation, and losses for Mediterranean wheat during grain filling, Agron. J. 83, 864–870.

    CAS  Google Scholar 

  • Parry M.A.J., Shewry P.R. (2003) Genotype-phenotype: narrowing the gap, Ann. Appl. Biol. 142, 115.

    Google Scholar 

  • Passiuora J.B. (1996) Drought and drought tolerance, Plant Growth Regul. 20, 79–83.

    Google Scholar 

  • Pecetti L., Boggini G., Gorham J. (1994) Performance of durum wheat landraces in a Mediterranean environment (eastern Sicily), Euphytica 80, 191–199.

    Google Scholar 

  • Pecetti L., Damania A.B., Jana J. (1992) Practical problems in large-scale germplasm evaluation. A case study in durum wheat, FAO/IBPGR PI, Genet. Res. Newsl. 88/89, 5–10.

    Google Scholar 

  • Pecetti L., Doust M.A., Calcagno L., Paciti C.N., Boggini G. (2002) Variation of morphological and agronomical traits and protein composition in durum wheat germplasm from Eastern Europe, Genet. Resour. Crop Ev. 48, 601–620.

    Google Scholar 

  • Pecetti L., Doust M.A., Calcagno L., Raciti C.N., Boggini G. (2001) Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from Eastern Europe, Genet. Resour. Crop Ev. 48, 609–620.

    Google Scholar 

  • Pedrechi R., Cisneros-Zevallos L. (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.), J. Agr. Food Chem. 54, 4557–4567.

    Google Scholar 

  • Perkowski J., Kiecana I., Chelkowski J. (1995) Susceptibility of barley cultivars and lines to Fusarium infection and mycotoxin accumulation in kernels. J. Phytopathol. 143, 547–551.

    CAS  Google Scholar 

  • Perkowski J., Kiecana I., Schumacher U., Muller H.M., Chelkowsi J., Golinski P. (1997) Head infection and accumulation of Fusarium toxin in kernels of 12 barley genotypes inoculated with Fusarium graminearum isolates of two chemotypes, Eur. J. Plant Pathol. 103, 85–90.

    CAS  Google Scholar 

  • Peterson D.M. (2004) Oat - a multifunctional grain, Proceedings of the 7th International Oat Conference, Helsinki, Finland, in: Peltonen-Sainio P., Topi-Hulmi M. (Eds.), Jokioinen: MTT Agrifood Research Finland, Agrifood Res. Rep. 51, 21–25.

    Google Scholar 

  • Peusha H., Lebedeva T., Prilinn O., Enno T. (2002) Genetic analysis of durable powdery mildew resistance in a common wheat line, Hereditas 136, 201–206.

    PubMed  Google Scholar 

  • Piffanelli P., Ramsay L., Waugh R., Benabdelmouna A., D’Hont A., Hollricher K., Jørgensen Jø.H., Schulze-Lefert P., Panstruga R. (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew, Nature 430, 887–891.

    Google Scholar 

  • Pinheiro de Carvalho M.Â.A., Slaski J.J., Abreu I., Ganança F.T., dos Santos T.M.M., Freitas L., Clemente Vieira M.R., Nunes A., Domingues A., Taylor G.J. (2004) Factors contributing to the development of aluminium resistance in the Madeiran maize germplasm, J. Plant Nutr. Soil Sc. 167, 93–98.

    CAS  Google Scholar 

  • Pinheiro de Carvalho M.Â.A., Slaski J.J., dos Santos T.M.M., Ganança F.T., Abreu I., Taylor G.J., Clemente Vieira M.R., Popova T.N., Franco E. (2003) Identification of aluminium resistant genotypes among madeiran regional wheats, Commun. Soil Sci. Plan. 34, 2967–2979.

    CAS  Google Scholar 

  • Pinheiro de Carvalho M.A.A., Ganança I.F.T., Abreu I., Sousa N.F., dos Santos T.M.M., Vieira Clemente R.M., Motto M. (2008) Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira, Genet. Resour. Crop Ev. 55, 221–233.

    Google Scholar 

  • Pommer G. (1990) Accumulation and translocation of nitrogen in cultivars of wheat with different demands for nutrition, in: El Bassam et al.(Eds.), genetic aspects of plant nutrition, Kluwer Academic Publishers, 1990.

    Google Scholar 

  • Proeseler G., Hartleb H., Kopahnke D., Lehmann Chr. O. (1989) Resistenzeigenschaften im Gersten - und Weizensortiment Gatersleben - 29. Prüfung von Gersten auf ihr Verhalten gegenüber dem Milden Gerstenmosaik-Virus (barley mild mosaic virus, BaMMV), Gerstengelbmosaik-Virus (barley yellow mosaic virus, BaYMV), Drechslera teres (Sacc.) Shoem. und Puccinia hordei Otth., Die Kulturpflanze 37, 145–154.

    Google Scholar 

  • Queen R.A., Gribbon B.M., James C., Jack P., Favell A.J. (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat, Mol. Genet. Genomics 271, 91–97.

    PubMed  CAS  Google Scholar 

  • Raciti C.N., Doust M.A., Lombardo G.M., Boggini G., Pecetti L. (2003) Characterization of durum wheat mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality, Eur. J. Agron. 19, 373–382.

    CAS  Google Scholar 

  • Rakszegi M., Láng L., Bed Z. (2006) Selection of wheat genotypes adaptable to organic farming conditions using classical and molecular breeding methods, in: Bed Z., Kovács G. (Eds.), Organic breeding and cultivation of cereals, Agroinform Publishing Ltd. Budapest, pp. 83–88.

    Google Scholar 

  • Rasmusson D.C., Philips R.L. (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis, Crop Sci. 37, 303–310.

    Google Scholar 

  • Rebourg C., Chastanet M., Gouesnard B., Welcker C., Dubreuil P., Charcosset A. (2003) Maize introduction into Europe: the history reviewed in the light of molecular data, Theor. Appl. Genet. 106, 895–903.

    PubMed  CAS  Google Scholar 

  • Rebourg C., Gouesnard B., Charcosset A. (2001) Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation, Heredity 86, 574–587.

    CAS  Google Scholar 

  • Reif J.C., Hamrit S., Heckenberger M., Schipprack W., Maurer H.P., Bohn M., Melchinger A.E. (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks, Theor. Appl. Genet. 111, 906–913.

    PubMed  CAS  Google Scholar 

  • Reinhold M., Sharp E.L. (1986) Resistance sources in barley to Puccinia hordei, Cereal Rusts Bull. 14, 75–83.

    Google Scholar 

  • Richards R.A. (1982) Breeding and selecting for drought resistance in wheat, in: Drought Resistance in Crops with Emphasis on Rice, IRRI, Los Banos, Philippines, pp. 303–316.

    Google Scholar 

  • Rigina S.I. (1966) Izuchenie ustoychivosti yachmenya k infekcionnym zabolevaniyam [Study of resistance of barley to infectious diseases], Can. Agr. Sci. Diss., Leningrad, 196 p.

    Google Scholar 

  • Rochev M.V., Levitin M.M. (1986) Resistance of barley varieties to Bipolaris sorokiniana (Sacc.) Shoemaker in the central Urals, Sibirski Vestnik Selskokhozyaistvennoi Nauk 6, 18–21.

    Google Scholar 

  • Roelfs A.P. (1988) Resistance to leaf and stem rust of wheat, in: Simmonds N.W., Rajaram S. (Eds.), Breeding strategies for resistance to the rusts of wheat, México CIMMYT.

    Google Scholar 

  • Rubiales D., Niks R.E. (2000) Combination of mechanisms of resistance to rust fungi as a strategy to increase durability, Opt. Méditerranéennes 40, 333–339.

    Google Scholar 

  • Ruiz M., Aguiriano E. (2004) Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins, Genet. Resour. Crop Ev. 51, 231–235.

    CAS  Google Scholar 

  • Ruiz M., Martín I. (2000) Spanish landraces collection of durum wheat maintained at the CRF-INIA, Opt. Mediterraneennes Serie A 40, 601–606.

    Google Scholar 

  • Ruiz De Galarreta J.I., Alvarez A. (2001) Morphological classification of maize landraces from northern Spain, Genet. Resour. Crop Ev. 48, 391–400.

    Google Scholar 

  • Russell J.R., Booth A., Fuller J.D., Baum M., Ceccarelli S., Grando S., Powell W. (2003) Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan, Theor. Appl. Genet. 107, 413–421.

    PubMed  CAS  Google Scholar 

  • Sabri N., Dominy P.J., Clarke D.D. (1997) The relative tolerances of wild and cultivated oats to infection by Erysiphe graminis f.sp. avenae: II. The effects of infection on photosynthesis and respiration, Physiol. Mol. Plant P. 50, 321–335.

    Google Scholar 

  • Sackville Hamilton N.R., Chorlton K.H. (1997) Regeneration of Accessions in Seed Collections: a Decision Guide, Handbook for Genebanks No. 5, International Plant Genetic Resources Institute, Rome.

    Google Scholar 

  • SANCO (2006) Commission directive of providing for certain derogations for acceptance of agricultural landraces and cultivars which are naturally adapted to the local and regional conditions and threatened by genetic erosion and for marketing of seed and seed potatoes of those landraces and cultivars, SANCO/3322/2006 Rev. 14.

    Google Scholar 

  • Sato K., Takeda K. (1994) Sources of resistance to net blotch in barley germplasm, Bull. Res. Inst. Bioresour., Okayama Univ. 2, 91–102.

    Google Scholar 

  • Schaller C.W., Wiebe G.A. (1952) Sources of resistance to net blotch of barley, Agron. J. 44, 334–336.

    Google Scholar 

  • Schaller C.W., Qualset C.O., Rutger J.N. (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to barley yellow dwarf virus disease in barley, Crop Sci. 4, 544–548.

    Google Scholar 

  • Semeane Y. (1995) Importance and control of barley leaf blights in Ethiopia, Rachis 14, 83–89.

    Google Scholar 

  • Shchelko L.G. (1969) Study of initial material of barley for resistance to loose smut, Sp. tr. V Vsesoyuzn. soveshchaniya po immunitetu (Kiev) 5, 7–12.

    Google Scholar 

  • Shiva V. (2007) Manifestos on the future of food and seed, Cambridge, Massachusetts.

    Google Scholar 

  • Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006a) Screening for resistance to leaf rust (Puccinia hordei) in a collection of Spanish barleys, Breeding Sci. 56, 173–177.

    CAS  Google Scholar 

  • Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006b) Search for partial resistance against Puccinia hordei in barley landraces from Fertile Crescent, Plant Breeding 125, 343–346.

    Google Scholar 

  • Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006c) Identification of resistance against a new pathotype of Puccinia hordei with virulence for the resistance gene Rph7, Eur. J. Plant Pathol. 115, 309–321.

    Google Scholar 

  • Siddique K.H.M., Belfort R.K., Tennant D. (1990) Root:shoot ratios of old and modern, tall and semidwarf wheats in mediterranean environment, Plant Soil 121, 89–98.

    Google Scholar 

  • Simmonds N.W. (1979) Principles of Crop Improvement, Longman, New York, p. 408.

    Google Scholar 

  • Skou J.P., Haahr V. (1985) The barleys in Nordic Gene Bank screened for resistance against barley leaf stripe (Drechslera graminea), Nordisk Jordbrugsforskning 67, 262–263.

    Google Scholar 

  • Skou J.P., Nielsen B.J., Haahr V. (1992) The effectivity of Vada resistance against leaf stripe in barley varieties, Nordisk Jordbrugsforskning 74, 34.

    Google Scholar 

  • Skou J.P., Nielsen B.J., Haahr V. (1994) Evaluation and importance of genetic resistance to leaf stripe in western European barleys, Acta Agr. Scand. B, Soil Plant Sci. 44, 98–106.

    Google Scholar 

  • Slaski J.J. (1992) Physiological and genetical aspects of the tolerance of cereals to soil acidity and to toxic effects of aluminium ions, Bull. IHAR 183, 37–45.

    Google Scholar 

  • Smirnova Z. G., Trofimovskaya A.Ya. (1985) Sources of resistance of barley to net blotch, Sb. Nauchn. Tr. Prikl. Bot., Benet. i Sel. 95, 52–56.

    Google Scholar 

  • Stodart B.J., Raman H., Coombes N., Mackay M. (2007) Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions, Genet. Resour. Crop Ev. 54, 759–766.

    Google Scholar 

  • Stubbs R.W. (1985) The Cereal rusts, Vol. 2, Disease, Epidemiology and Control, in: Roelfs A., Bushnell W.R. (Eds.), Orlando, Academic Press, pp. 61–101.

    Google Scholar 

  • Su L., Maric A., Kostic B., Mikic K. (1989) Some properties of Helminthosporium gramineum and barley resistance to the pathogen, Zastita Bilja 40, 151–164.

    Google Scholar 

  • Surin N.A. (1989) Source material and problems of breeding spring barley in the eastern Siberia, Sbornik Nauchn. Trud. Prikl. Bot. Gen. Selektsii 129, 37–41.

    Google Scholar 

  • Swaminathan M.S. (2002) The Past, Present and Future Contributions of Farmers of the Conservation and Development of Genetic Diversity, IPGRI 2002, Managing Plant Genetic Diversity, in: Engels J.M.M., Ramanatha Rao V., Brown A.H.D., Jackson M.T., Cabi Publishing, Wallingford, UK, pp. 23–31.

    Google Scholar 

  • Takeda K. (1992) Current topics on the scab disease resistance in barely and wheat, Proc. Japan Assoc. Mycotoxicol. 36, 13–17.

    Google Scholar 

  • Takeda K., Heta H. (1989) Establishing the testing method and a search for the resistant varieties to Fusarium head blight in barley, Japan J. Breed. 39, 203–216.

    Google Scholar 

  • Tang C., Asseng S., Diatloff E., Rengel Z. (2003) Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: effects of rainfall, liming and nitrogen application, Plant Soil 254, 349–360.

    CAS  Google Scholar 

  • Teklu Y., Hammer K., Huang X.Q., Röder M.S. (2005) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces, Genet. Resour. Crop Ev. 100, 1–12.

    Google Scholar 

  • Tenaillon M.I., Sawkins M.C., Long A.D., Gaut R.L., Doebley J.F., Gaut B.S. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proc. Natl Acad. Sci. (USA) 98, 9161–9166.

    Google Scholar 

  • Teshome A., Brown A.H.D., Hodgkin T. (2001) Diversity in landraces of cereal and legume crops, in: Janick J. (Ed.), Plant Breeding Reviews, John Wiley & Sons, Inc., pp. 221–261.

    Google Scholar 

  • Thomas W.T.B. (2003) Prospects for molecular breeding of barley, Ann. Appl. Biol. 142, 1–12.

    CAS  Google Scholar 

  • Tilman D. (1996) The greening of the green evolution, Nature 396, 211–212.

    Google Scholar 

  • Tokatlidis I.S., Koutsika-Sotiriou M., Fasoulas A.C. (2001) The development of density-independent hybrids in maize, Maydica 46, 21–25.

    Google Scholar 

  • Tollenaar M., Wu J. (1999) Yield improvement in temperate maize is attributable to greater stress tolerance, Crop Sci. 39, 1597–1604.

    Google Scholar 

  • Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006) A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat, Science 314, 1298–1301.

    CAS  Google Scholar 

  • Upadhyay M.K., Prakash S. (1977) Identification of diverse genes conferring resistance to indian races of stripe rust of barley, Indian J. Genet. Plant Breeding 37, 68–72.

    Google Scholar 

  • Valamoti S.M. (2002) Food remains from Bronze Age Archondiko and Mesimeriani Toumba in northern Greece? Veg. Hist. Archaeobot. 11, 17–22.

    Google Scholar 

  • Van Beem J. (1997) Variation in nitrogen use efficiency and root system size in temperate maize genotypes, in: Edmeades G.O., Banziger M., Mickelson H.R., Pena-Valdivia C.B. (Eds.), Developing drought- and low-N-tolerant maize, Cimmyt, Mexico.

    Google Scholar 

  • Van Dijk K.V., Parlevliet J.E., Kema G.H.J., Zeven A.C., Stubbs R.W. (1988) Characterization of the durable resistance to yellow rust in old winter wheat cultivars in the Netherlands, Euphytica 38, 149–158.

    Google Scholar 

  • Van Ginkel M., Rajaram S. (1992) Breeding for durable resistance to diseases in wheat: An international perspective, Durability of Disease Resistance, in: Jacobs Th., Parlevliet J.E. (Eds.), Kluwer Academic Publ., Dordrecht, pp. 259–272.

    Google Scholar 

  • Van Leur J.A.G. (1989) Barley pathology, Cereal Improvement Program Annual Report, 1988, pp. 122–130.

    Google Scholar 

  • Van Leur J.A.G., Ceccarelli S., Grando S. (1989) Diversity for disease resistance in barley landraces from Syria and Jordan, Plant Breeding 103, 324–335.

    Google Scholar 

  • Van Treuren R., Tchoudinova I., van Soest L.J.M., van Hintum T.J.L. (2006) Marker assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data, Genet. Resour. Crop Ev. 53, 43–52.

    Google Scholar 

  • Vaz Patto M.C., Moreira P.M., Almeida N., Satovic Z., Pêgo S. (2008) Genetic diversity evolution through participatory maize breeding in Portugal, Euphytica 161, 283–291.

    Google Scholar 

  • Vaz Patto M.C., Satovic Z., Pêgo S., Fevereiro P. (2004) Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers, Euphytica 137, 63–72.

    Google Scholar 

  • Vechet L., Vojácková M. (2005) Use of Detached Seedling Leaf Test to Evaluate Wheat Resistance to Septoria Tritici Blotch, Czech J. Genet. Plant Breeding 41, 112–116.

    Google Scholar 

  • Velibekova E.L. (1981) Susceptibility of barley to root rots, Selektsiya i Semenovodstvo, USSR 10, 20–21.

    Google Scholar 

  • Wahl I., Anikster Y., Manisterski J. (1988) Evolution of host-parasite relations in the Puccinia hordei - Hordeum ssp. system at the center of origin, Proc. 7th Cereal Rusts Conference, Vienna, pp. 122–123.

    Google Scholar 

  • Waines J.G., Ehdaie B. (2007) Domestication and Crop Physiology: Roots of Green Revolution Wheat, Ann. Bot. 100, 991–998.

    Google Scholar 

  • Walther U., Lehmann C.O. (1980) Resistenzeigenschaften im Gersten - und Weizensortiment Gatersleben - 24. Prüfung von Sommer und Wintergersten auf ihr Verhalten geganuber Zwergrost (Puccinia hordei Otth), Die Kulterpfanze 28, 227–238.

    Google Scholar 

  • Weltzien E. (1988) Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East, Plant Breeding 101, 95–106.

    Google Scholar 

  • Wesenberg D.M., Briggle L.W., Smith D.H. (1992) Germplasm collection, preservation and utilization, in: Marshall H.G., Sorrells M.E. (Eds.), Oat Science and Technology, American Society of Agronomy, Madison Wisconsin, pp. 793–820.

    Google Scholar 

  • Wiberg A. (1974a) Genetical studies of spontaneous sources of resistance to powdery mildew in barley, Hereditas 77, 89–148.

    PubMed  CAS  Google Scholar 

  • Wiberg A. (1974b) Sources of resistance to powdery mildew in barley, Hereditas 78, 1–40.

    PubMed  CAS  Google Scholar 

  • Wieseler F., Horst W.J. (1994) Root growth and nitrate utilization of maize cultivars under field conditions, Plant Soil 163, 267–277.

    Google Scholar 

  • Witcombe J.R., Joshi A., Joshi K.D., Shapit B.R. (1996) Farmer participatory crop improvement I: Varietal selection and breeding methods and their impact on biodiversity, Exp. Agr. 32, 445–460.

    Google Scholar 

  • Wolfe M.S., Schwarzbach E. (1978) Patterns of race changes in powdery mildews, Ann. Rev. Phytopathol. 16, 159–180.

    Google Scholar 

  • Wright A.J., Heale J.B. (1984) Adult plant resistance to powdery mildew (Erysiphe graminis) in three barley cultivars, Plant Pathol. 33, 225–231.

    Google Scholar 

  • Wurtzel E.T. (2004) Genomics, genetics and biochemistry of maize carotenoid biosynthesis, Recent. Adv. Phytochem. 38, 85–110.

    CAS  Google Scholar 

  • Yahiaoui S., Igartua E., Moralejo M., Ramsay L., Molina-Cano J.L., Ciudad F.J., Lasa J.M., Gracia M.P., Casas A.M. (2008) Patterns of genetic and eco-geographical diversity in Spanish barleys, Theor. Appl. Genet. 116, 271–282.

    PubMed  CAS  Google Scholar 

  • Yahyaoui A.H., Sharp E.L., Reinhold M. (1988) New sources of resistance to Puccinia hordei in barley landrace cultivars, Phytopathology 78, 905–908.

    Google Scholar 

  • Yasuda S., Rikiishi K. (1997) Screening of the World Barley Collection for resistance to barley yellow mosaic virus, Barley Genet. Newsl. 28, 64–66.

    Google Scholar 

  • Yau S.-K. (2002) Comparison of European with West Asian and North African winter barleys in tolerance to boron toxicity, Euphytica 123, 307–314.

    CAS  Google Scholar 

  • Yau S.-K., Nachit M.M., Ryan J., Hamblin J. (1995) Phenotypic variation in boron-toxicity tolerance at seedling stage in durum wheat (Triticum durum), Euphytica 83, 185–191.

    Google Scholar 

  • Yitbarek S., Berhane L., Fikadu A., VanLeur J.A.G., Grando S., Ceccarelli S. (1998) Variation in Ethiopian barley landrace populations for resistance to barley leaf scald and net blotch, Plant Breeding 117, 419–423.

    Google Scholar 

  • Zeven A.C. (1996) Results of activities to maintain landraces and other material in some European countries in situ before 1945 and what we may learn from them, Genet. Resour. Crop Ev. 43, 337–341.

    Google Scholar 

  • Zeven A.C. (1998) Landraces: a review of definitions and classifications, Euphytica 104, 127–139.

    Google Scholar 

  • Zeven A.C. (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review, Euphytica 110, 181–191.

    Google Scholar 

  • Zeven A.C. (2000) Traditional maintenance breeding of landraces: 1. Data by crop, Euphytica 116, 65–85.

    Google Scholar 

  • Zhang X., Jin Y., Rudd R., Hall T., Rudd J., Bockelman H. (2000) Fusarium head blight resistant sources of spring wheat identified from the USDA collection. National Fusarium Head Blight Forum, Kinko’s, Okemos, MI.

    Google Scholar 

  • Zhang Z.J. (1995) Evidence of durable resistance in nine Chinese land races and one Italian cultivar of Triticum aestivum to Puccinia striiformis, Eur. J. Plant Pathol. 101, 405–409.

    Google Scholar 

  • Zhang P., Dreisigacker S., Buerkert A., Alkhanjari S., Melchinger A.E., Warburton M.L. (2006) Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers, Genet. Resour. Crop Ev. 56, 1351–1360.

    Google Scholar 

  • Zhou L.-L., Bai G.-H., Carver B., Zhang D.-D. (2007) Identification of new sources of aluminum resistance in wheat, Plant Soil 297, 105–118.

    CAS  Google Scholar 

  • Zohary D., Hopf M. (1988) Domestication of Plants in the Old World, Clarendon, Oxford.

    Google Scholar 

  • Zohary D., Hopf M. (2000) Domestication of plants in the Old World, New York: Oxford University Press, 3rd ed, 316 p.

    Google Scholar 

Download references

Acknowledgements

We thank the European Union for funding the COST Action 860 “Sustainable variety development for low-input and organic agriculture” (2004–2008) through which this review was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Newton, A.C. et al. (2011). Cereal Landraces for Sustainable Agriculture. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_10

Download citation

Publish with us

Policies and ethics