Skip to main content

TRPM Channels in the Vasculature

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Recent studies show that mammalian melastatin TRPM nonselective cation channels (TRPM1-8), members of the largest and most diverse TRP subfamily, are widely expressed in the endothelium and vascular smooth muscles. When activated, these channels similarly to other TRPs permit the entry of sodium, calcium and magnesium, thus causing membrane depolarisation. Although membrane depolarisation reduces the driving force for calcium entry via TRPMs as well as other pathways for calcium entry, in smooth muscle myocytes expressing voltage-gated Ca2+ channels the predominant functional effect is an increase in intracellular Ca2+ concentration and myocyte contraction. This review focuses on several best documented aspects of vascular functions of TRPMs, including the role of TRPM2 in oxidant stress, regulation of endothelial permeability and cell death, the connection between TRPM4 and myogenic response, significance of TRPM7 for magnesium homeostasis, vessel injury and hypertension, and emerging evidence that the cold and menthol receptor TRPM8 is involved in the regulation of vascular tone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CA:

constitutively active

CaM:

calmodulin

CAN:

Ca2+-activated nonselective channel

DAG:

diacylglycerol

EC:

endothelial cell

GPCR:

G protein-coupled receptor

InsP3 :

inositol 1,4,5-trisphosphate

lysoPL:

lysophospholipids

NSCC:

non-selective cation channel

PIP2 :

phosphatidylinositol-4,5-bisphosphate

PKA:

protein kinase A

PKC:

protein kinase C

PLC:

phospholipase C

ROC:

receptor-operated channel

ROS:

reactive oxygen species

SAC:

stretch-activated channel

SOC:

store-operated channel

SR:

sarcoplasmic reticulum

TM:

transmembrane domain

VGCC:

voltage-gated Ca2+ channels

VSMC:

vascular smooth muscle cell

References

  1. Beech DJ (2005) Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. Clin Exp Pharmacol Physiol 32:597–603

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Beech DJ (2007) Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem Soc Trans 35:890–894

    CAS  PubMed  Google Scholar 

  3. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    CAS  PubMed  Google Scholar 

  4. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    CAS  PubMed  Google Scholar 

  5. Kotlikoff MI (2003) Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog Biophys Mol Biol 83:171–191

    CAS  PubMed  Google Scholar 

  6. Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90:113–178

    CAS  PubMed  Google Scholar 

  7. Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C (2007) Transient receptor potential channel 6 mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101:1030–1038

    CAS  PubMed  Google Scholar 

  8. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:769–785

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Clapham DE, Julius D, Montell C, Schultz G (2005) International union of pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450

    CAS  PubMed  Google Scholar 

  10. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    CAS  PubMed  Google Scholar 

  11. Venkatachalam K, Montell C (2007) TRP Channels. Annu Rev Biochem 76:387–417

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Albert AP, Large WA (2006) Signal transduction pathways and gating mechanisms of native TRP-like cation channels in vascular myocytes. J Physiol 570:45–51

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685–706

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583:25–36

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirc 13:693–708

    CAS  Google Scholar 

  16. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  17. Kraft R, Harteneck C (2005) The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Arch 451:204–211

    CAS  PubMed  Google Scholar 

  18. Kuhn FJP, Knop G, Luckhoff A (2007) The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J Biol Chem 282:27598–27609

    PubMed  Google Scholar 

  19. Tsuruda PR, Julius D, Minor DL Jr. (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Lepage PK, Boulay G (2007) Molecular determinants of TRP channel assembly. Biochem Soc Trans 35:81–83

    CAS  PubMed  Google Scholar 

  22. Fleig A, Penner R (2004b) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    CAS  PubMed  Google Scholar 

  23. Harteneck C (2005) Function and pharmacology of TRPM cation channels. N-S Arch Pharmacol 371:307–314

    CAS  Google Scholar 

  24. Fleig A, Penner R (2004a) Emerging roles of TRPM channels. Novartis Found Symp 258:248–258

    CAS  PubMed  Google Scholar 

  25. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Rec Signal Transduct 26:159–178

    CAS  Google Scholar 

  26. McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451:235–242

    CAS  PubMed  Google Scholar 

  27. Zholos A (2010) Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol 159:1559–1571

    PubMed Central  CAS  PubMed  Google Scholar 

  28. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  29. Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101:15494–15499

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Malkia A, Madrid R, Meseguer V, de la Pe E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 581:155–174

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Matta JA, Ahern GP (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585:469–482

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Reid G, Flonta ML (2002) Ion channels activated by cold and menthol in cultured rat dorsal root ganglion neurones. Neurosci Lett 324:164–168

    CAS  PubMed  Google Scholar 

  33. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004b) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    CAS  PubMed  Google Scholar 

  34. Nilius B, Mahieu F, Karashima Y, Voets T (2007) Regulation of TRP channels: a voltage-lipid connection. Biochem Soc Trans 35:105–108

    CAS  PubMed  Google Scholar 

  35. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168

    CAS  PubMed  Google Scholar 

  36. Rohacs T (2009) Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45:554–565

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    CAS  PubMed  Google Scholar 

  38. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci STKE 2:ra21

    Google Scholar 

  39. Xu X-Z S, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697

    PubMed Central  PubMed  Google Scholar 

  40. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595–599

    CAS  PubMed  Google Scholar 

  41. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    CAS  PubMed  Google Scholar 

  43. Hecquet CM, Malik AB (2009) Role of H2O2-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost 101:619–625

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102:347–355

    CAS  PubMed  Google Scholar 

  45. Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76

    CAS  PubMed  Google Scholar 

  46. Kuhn FJ, Heiner I, Luckhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 451:212–219

    PubMed  Google Scholar 

  47. Scharenberg A (2005) TRPM2 and TRPM7: channel/enzyme fusions to generate novel intracellular sensors. Pflugers Arch 451:220–227

    CAS  PubMed  Google Scholar 

  48. Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, Penn L, Barber DL, Stahl R, Carey DJ, Cheung JY, Miller BA (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol 290:C1146–C1159

    CAS  Google Scholar 

  49. Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud AL, Scharenberg AM, Denu JM (2006) Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 281:14057–14065

    CAS  PubMed  Google Scholar 

  50. Grimm C, Kraft R, Sauerbruch S, Schultz G, & Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278: 21493–21501

    Google Scholar 

  51. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    CAS  PubMed  Google Scholar 

  52. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    CAS  PubMed  Google Scholar 

  53. Petersen OH (2002) Cation channels: Homing in on the elusive CAN channels. Curr Biol 12:R520–R522

    CAS  PubMed  Google Scholar 

  54. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    CAS  PubMed  Google Scholar 

  55. Suh S, Watanabe H, Droogmans G, Nilius B (2002) ATP and nitric oxide modulate a Ca2+-activated non-selective cation current in macrovascular endothelial cells. Pflugers Arch 444:438–445

    CAS  PubMed  Google Scholar 

  56. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  57. Nilius B, Vennekens R (2006) From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch 453:313–321

    CAS  PubMed  Google Scholar 

  58. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    CAS  PubMed  Google Scholar 

  59. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005a) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    CAS  PubMed  Google Scholar 

  60. Earley S, Straub SV, Brayden JE (2007) Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol 292:H2613–H2622

    CAS  Google Scholar 

  61. Vennekens R, Nilius B (2007) Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol 179:269–285

    CAS  PubMed  Google Scholar 

  62. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    CAS  PubMed  Google Scholar 

  63. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Ohkuri T, Yasumatsu K, Horio N, Jyotaki M, Margolskee RF, Ninomiya Y (2009) Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. Am J Physiol 296:R960–R971

    CAS  Google Scholar 

  65. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    CAS  PubMed  Google Scholar 

  66. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    CAS  PubMed  Google Scholar 

  67. Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27:5777–5786

    CAS  PubMed  Google Scholar 

  68. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005b) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    CAS  PubMed  Google Scholar 

  70. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a MgATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    CAS  PubMed  Google Scholar 

  71. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004a) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    CAS  PubMed  Google Scholar 

  72. Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol 292: C460–C467

    CAS  Google Scholar 

  73. Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98:245–253

    CAS  PubMed  Google Scholar 

  74. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    CAS  PubMed  Google Scholar 

  75. Colburn RW, Lubin ML, Stone J, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54: 379–386

    CAS  PubMed  Google Scholar 

  76. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    CAS  PubMed  Google Scholar 

  77. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  78. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117:1647–1657

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with Transient Receptor Potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  80. Zhang L, Barritt GJ (2006) TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr-Relat Cancer 13:27–38

    PubMed  Google Scholar 

  81. Abeele FV, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N (2006) Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 281:40174–40182

    Google Scholar 

  82. Andersson DA, Nash M, Bevan S (2007) Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 27:3347–3355

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120

    CAS  PubMed  Google Scholar 

  84. Park KM, Trucillo M, Serban N, Cohen RA, Bolotina VM (2008) Role of iPLA2 and store-operated channels in agonist-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries. Am J Physiol 294:H1183–H1187

    CAS  Google Scholar 

  85. Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N (2005) Novel role of cold/menthol-sensitive Transient Receptor Potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280:39423–39435

    CAS  PubMed  Google Scholar 

  86. Andersson DA, Chase HWN, Bevan S (2004) TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24:5364–5369

    CAS  PubMed  Google Scholar 

  87. Bodding M, Wissenbach U, Flockerzi V (2007) Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium 42:618–628

    PubMed  Google Scholar 

  88. Hui K, Guo Y, Feng ZP (2005) Biophysical properties of menthol-activated cold receptor TRPM8 channels. Biochem Biophys Res Commun 333:374–382

    CAS  PubMed  Google Scholar 

  89. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42:427–438

    CAS  PubMed  Google Scholar 

  90. Reid G (2005) ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 451:250–263

    CAS  PubMed  Google Scholar 

  91. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci USA 104:10246–10251

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    CAS  PubMed  Google Scholar 

  93. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    CAS  PubMed  Google Scholar 

  94. Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570–1582

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Nilius B, Mahieu FF, Prenen J, Janssens A, Owsianik G, Vennekens RF, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329–336

    CAS  PubMed  Google Scholar 

  98. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    CAS  PubMed  Google Scholar 

  99. Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G, Touyz RM (2009) Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27:155–166

    CAS  PubMed  Google Scholar 

  100. He Y, Yao G, Savoia C, Touyz RM (2005) Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96:207–215

    CAS  PubMed  Google Scholar 

  101. Touyz RM, He Y, Montezano ACI, Yao G, Chubanov V, Gudermann T, Callera GE (2006) Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol 290:R73–R78

    CAS  Google Scholar 

  102. Yogi A, Callera GE, Tostes R, Touyz RM (2009) Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol 296:R201–R207

    CAS  Google Scholar 

  103. Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. Mol Pharmacol 67:798–805

    CAS  PubMed  Google Scholar 

  104. Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  105. Nilius B, Prenen J, Voets T, Droogmans G (2004a) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch 448:70–75

    CAS  PubMed  Google Scholar 

  106. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004b) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560:753–765

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Meseguer V, Karashima Y, Talavera K, D’Hoedt D, Donovan-Rodriguez T, Viana F, Nilius B, Voets T (2008) Transient Receptor Potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J Neurosci 28:576–586

    CAS  PubMed  Google Scholar 

  108. Lashinger ESR, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, Davenport EA, Hoffman BE, Laping NJ, Su X (2008) AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol 295: F803–F810

    CAS  Google Scholar 

  109. Yang XR, Lin MJ, McIntosh LS, Sham JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol 290:L1267–L1276

    CAS  Google Scholar 

  110. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV (2009) Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol 296:H1868–H1877

    CAS  Google Scholar 

  111. Simard JM, Tarasov KV, Gerzanich V (2007) Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta 1772:947–957

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Miller BA (2004) Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 143:515–516

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Di A, Malik AB (2010) TRP channels and the control of vascular function. Curr Opin Pharmacol 10:127–132

    CAS  PubMed  Google Scholar 

  114. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Hill MA, Davis MJ (2007) Coupling a change in intraluminal pressure to vascular smooth muscle depolarization: still stretching for an explanation. Am J Physiol 292:H2570–H2572

    CAS  Google Scholar 

  116. Earley S, Waldron BJ, Brayden JE (2004) Critical role for Transient Receptor Potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    CAS  PubMed  Google Scholar 

  117. Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    CAS  PubMed  Google Scholar 

  118. Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123:371–385

    CAS  PubMed  Google Scholar 

  119. Sharif-Naeini R, Dedman A, Folgering JH, Duprat F, Patel A, Nilius B, Honore E (2008) TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 456:529–540

    CAS  PubMed  Google Scholar 

  120. Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    CAS  PubMed  Google Scholar 

  121. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Inoue K, Xiong ZG (2009) Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 83:547–557

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Paravicini TM, Yogi A, Mazur A, Touyz RM (2009a) Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 53:423–429

    CAS  PubMed  Google Scholar 

  124. Touyz RM (2008) Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol 294:H1103–H1118

    Google Scholar 

  125. Hawthorn M, Ferrante J, Luchowski E, Rutledge A, Wei XY, Triggle DJ (1988) The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment Pharmacol Ther 2:101–118

    CAS  PubMed  Google Scholar 

  126. Wright CE, Laude EA, Grattan TJ, Morice AH (1997) Capsaicin and neurokinin A-induced bronchoconstriction in the anaesthetised guinea-pig: evidence for a direct action of menthol on isolated bronchial smooth muscle. Br J Pharmacol 121:1645–1650

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-activated K+ channels. Circ Res 104:987–994

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Sherkheli MA (2009) Letter to the editor: “Is menthol- or icilin-induced vasodilation mediated by the activation of TRPM8?” Am J Physiol 297:H887

    Google Scholar 

  129. Kellogg DL Jr., Pergola PE, Piest KL, Kosiba WA, Crandall CG, Grossmann M, Johnson JM (1995) Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res 77:1222–1228

    CAS  PubMed  Google Scholar 

  130. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JXJ (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol 285:L1233–L1245

    CAS  Google Scholar 

  131. Hamaguchi Y, Matsubara T, Amano T, Uetani T, Asano H, Iwamoto T, Furukawa K, Murohara T, Nakayama S (2008) Na+-independent Mg2+ transport sensitive to 2-aminoethoxydiphenyl borate (2-APB) in vascular smooth muscle cells: involvement of TRPM-like channels. J Cell Mol Med 12:962–974

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories is funded by BHF and NIH. We thank Mrs Tetyana Zholos for her assistance in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zholos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zholos, A., Johnson, C., Burdyga, T., Melanaphy, D. (2011). TRPM Channels in the Vasculature. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_37

Download citation

Publish with us

Policies and ethics