Skip to main content

Ecosystem Manipulation and Restoration on the Basis of Long-Term Conceptions

  • Chapter
  • First Online:
Long-Term Ecological Research

Abstract

Ecosystems are affected by anthopogenic activities at a global level and, thus, are manipulated world-wide. This chapter addresses the impacts of apparent and non-apparent manipulations and restoration by human activities in Europe with a focus on the temperate zone. Agricultural management practices induced evident site-specific modification of natural ecosystem structures and functions whereas forests and natural grasslands and also aquatic systems are considered as being less manipulated. Ecosystems such as mires, northern wetlands and the tundra, have received attention due to their vulnerability for conserving carbon and biodiversity and for identifying the role of non-apparent manipulations on ecosystem functioning. Drastic types of ecosystem manipulation include open-cast mining activities that occur worldwide and induce perturbation of large areas across landscapes. Such harsh human impacts create the need for remediation and restoration measures for mining regions that address classical food and fodder services and also nature conservation and novel social benefits. Recultivation therefore offers the opportunity to introduce new land-use types and to study processes of initial ecosystem development that are still poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson, J., Floret, C., LeFloćh, E., Ovalle, C., & Pontainer, R. (1993). Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restoration Ecology, 1, 8–17.

    Article  Google Scholar 

  • Breckle, S. W., Veste, M., & Wucherer, W. (Eds.) (2001). Sustainable land-use in deserts. Heidelberg, Berlin, New York: Springer.

    Google Scholar 

  • COM. (2006). Halting the loss of biodiversity by 2010 – and beyond. Sustaining ecosystem services for human well–being. Communication from the Commission of the European Communities to the Council and the European Parliament 216. Retrieved from http://europa.eu/scadplus/leg/en/lvb/l28176.htm.

  • Costanza, R., D’Arge, R., DeGroot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Dilly, O. (2005). Microbial energetics in soil. In: Buscot, F. & Varma, A. (Eds.), Microorganisms in soils: Roles in genesis and functions (pp. 123–138). Berlin: Springer.

    Chapter  Google Scholar 

  • Dilly, O. (2006). Evaluating soil quality in ecosystems based on modern respiratory approaches. In: Cenci, R. & Sena, F. (Eds.), Biodiversity-bioindication to evaluate soil health (pp. 59–64). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Dilly, O., Bloem, J., Vos, A., & Munch, J. (2004). Bacterial diversity during litter decomposition in agricultural soils. Applied and Environmental Microbiology, 70, 468–474.

    Article  CAS  Google Scholar 

  • Dilly, O., Camilleri, M., Dörrie, C., Formosa, S., Galea, R., Hallenbarter, D., et al. (2008). Key sustainability issues and the spatial classification of sensitive regions in Europe. In: Helming, K., Perez-Soba, M. & Tabbush, P. (Eds.), Sustainability impact assessment of multifunctional land use (pp. 471–494). Berlin: Springer.

    Chapter  Google Scholar 

  • Dilly, O., Doerrie, C., Schneider, B.-U., & Hüttl, R. F. (2007). Abschätzung der Folgen von Bioenergieförderung in der brandenburgischen Lausitz. Forum der Forschung, 20, 35–40.

    Google Scholar 

  • Dilly, O., Eschenbach, C., Kutsch, W. L., Kappen, L., & Munch, J. C. (2008). Eco-physiological key processes in agricultural and forest ecosystems. In: Fränzle, O., Kappen, L., Blume, H. P., & Dierssen, K. (Eds.), Ecosystem organization of a complex landscape: Long-term research in the Bornhöved Lake District, Germany. Ecological Studies 202 (pp. 61–81). Berlin: Springer.

    Chapter  Google Scholar 

  • Dilly, O., Winter, K., Lang, A., & Munch, J. C. (2001). Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. Journal of Plant Nutrition and Soil Science, 164, 407–413.

    Article  CAS  Google Scholar 

  • Dilly, O., Zeihser U., Hüttl, R. F., Kendzia G., Wüstenhagen D., & Dähnert D. (2007). Perspektiven für einen modernen Weinbau in der Niederlausitz. Forum der Forschung, 20, 80–84.

    Google Scholar 

  • Drebenstedt, C. (1998). Planungsgrundlagen der Wiedernutz-barmachung. In: Pflug, W.(Ed.), Braunkohletagebau und Rekultivierung (pp. 487–512). Berlin: Springer.

    Chapter  Google Scholar 

  • Dupraz, C., & Liagre, F. (2008). Agroforesterie. Des arbres et des cultures. Paris: Editions France Agricole.

    Google Scholar 

  • EEA. (2006). Progress towards halting the loss of biodiversity by 2010. Copenhagen: European Environmental Agency.

    Google Scholar 

  • EEA. (2007). Europe’s environment. The fourth report. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Ehrenfeld, J. G. (2000). Defining the limits of restoration: The need for realistic goals. Ecological Restoration, 8, 2–9.

    Article  Google Scholar 

  • Ellenberg, H., Mayr, R., & Schauermann, J. (1986). Ökosystemforschung – Ergebnisse des Solling-Projektes 1966–1986. Stuttgart: Ulmer Verlag.

    Google Scholar 

  • ETAP. (2007, December 01). Environmental technologies action plan. Retrieved from http://ec.europa.eu/environment/etap/index_en.htm.

  • Ewers, R. M., & Didham, R. K. (2007). The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conservation Biology, 21, 926–936.

    Article  Google Scholar 

  • Finck, P., Riecken, U., & Schröder, E. (2002). Pasture landscapes and nature conservation. New strategies for preservation of open landscapes in Europe. In: Redecker, B., Finck, P., Riecken, U., & Härdtle, W. (Eds.), Pasture landscapes and nature conservation (pp. 1–14). Berlin: Springer.

    Chapter  Google Scholar 

  • Fränzle, O., Kappen, L., Blume, H. P., & Dierssen, K. (Eds.). (2008). Ecosystem organization of a complex landscape: Long-term research in the Bornhöved Lake District, Germany. Ecological Studies 202. Berlin: Springer.

    Google Scholar 

  • Fritsche, W. (1999). Mikrobiologie. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Gollan, T., & Heindl, B. (1998). Bayreuther Institut für Terrestrische Ökosystemforschung. In: Fränzle, O., Müller, F., & Schröder, W. (Eds.), Handbuch der Ökosystemforschung. Grundlagen und Anwendungen der Ökosystemforschung. V-4.6 (pp. 1–18). Landsberg: Ecomed.

    Google Scholar 

  • Górny, A. G., & Garczynski, S. (2002). Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.). Journal of Applied Genetics, 43, 145–160.

    Google Scholar 

  • Grünewald, U. (2001). Water resources management in river catchments influenced by lignite mining. Ecological engineering, 17, 143–152.

    Article  Google Scholar 

  • Grünewald, H., Brandt, B. K. V., Schneider, B. U., Bens, O., Kendzia G., & Huettl, R. F. (2007). Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecological Engineering, 29, 319–328.

    Article  Google Scholar 

  • Gundelwein, A., Müller-Lupp, T., Sommerkorn, M., Haupt, E. T. K., Pfeiffer, E.-M. & Wiechmann, H. (2007). Carbon in tundra soils in the Lake Labaz region of arctic Siberia. European Journal of Soil Science, 58, 1164–1174.

    Article  CAS  Google Scholar 

  • Hald, A. B., & Vinther, E. (2000). Restoration of a species-rich fen-meadow after abandonment: Response of 64 plant species to management. Applied Vegetation Science, 3, 15–24.

    Article  Google Scholar 

  • Harris, J. A., Hobbs, R. J., Higgs, E., & Aronson, J. (2006). Ecological restoration and global climate change. Restoration Ecology, 14, 170–176.

    Article  Google Scholar 

  • Hatfield, J. L., Sauer, T. J., & Prueger, J. H. (2001). Managing soils to achieve greater water use efficiency: A review. Agronomy Journal, 93, 271–280.

    Article  Google Scholar 

  • Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.

    Article  CAS  Google Scholar 

  • Heinkele, T., Neumann, C., Rumpel, C., Strzyszcz, Z., Kögel-Knabner, I., & Hüttl, R. F. (1999). Zur Pedogenese pyrit- und kohlehaltiger Kippsubstrate im Lausitzer Braunkohlerevier. In: Hüttl, R. F., Klem, D., & Weber, E. (Eds.), Rekultivierung von Bergbaufolgelandschaften (pp. 25–44). Berlin: de Gruyter.

    Chapter  Google Scholar 

  • Helming, K., Sieber, S., Tscherning, K., König, B., Müller, K., Wiggering, H., et al. (2007). Land use functionality as a frame for impact assessment. In: Knierim, A., Nagel, U. J., & Schäfer, C. (Eds.), Managing economic, social and biological transformations. Proceedings of the First Green Week Scientific Conference. 2007 (pp. 33–44). Weikersheim: Margraf Publishers.

    Google Scholar 

  • Hüttl, R. F., & Gerwin, W. (2004). Entwicklung und Bewertung gestörter Kulturlandschaften. Fallbeispiel Niederlausitzer Bergbaufolgelandschaft. Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, Cottbus, Band 2.

    Google Scholar 

  • Hüttl, R. F., & Weber, E. (2001). Forest ecosystem development in post-mining landscapes: A case study of the Lusatian lignite district. Naturwissenschaften, 88, 322–329.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change. (2007). The physical science basis. In S. Solomon et al. (Eds.), Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.

    Google Scholar 

  • Jensen, K. (1998). Species composition of soil seed bank and seed rain of abandoned wet meadows and their relation to aboveground vegetation. Flora, 139, 345–359.

    Google Scholar 

  • Jensen, K., & Gutekunst, K. (2003). Effects of litter on establishment of grassland plant species: The role of seed size and successional status. Basic and Applied Ecology, 4, 579–587.

    Article  Google Scholar 

  • Jones, C. C., & DelMoral, R. (2005). Effects of microsite conditions on seedling establishment on the foreland of Coleman Glacier, Washington. Journal of Vegetation Science, 16, 293–300.

    Article  Google Scholar 

  • Joosten, H., & Couwenberg, J. (2001). Bilanzen zum Moorverlust – das Beispiel Europa. In: Succow, M., & Joosten, H. (Eds.), Landschaftsökologische Moorkunde (pp. 406–409). Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Kamm, B., Schneider, B. U., Hüttl, R. F., Grünewald, H., Gusovius, H. J., Stollberg, C., et al. (2006). Lignocellulosic feedstock biorefinery – Combination of technologies of agroforestry and a biobased substance and energy economy. Forum der Forschung, 19, 53–62.

    Google Scholar 

  • Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener, R. & Lajtha, K. (Eds.), Stable isotopes in ecology and environmental science (pp. 375–449). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Kendall, C., McDonnell, J. J., & Gu, W. (2001). A look inside ‘black box’ hydrograph separation models: A study at the Hydrohill catchment. Hydrological Processes, 15, 1877–1902.

    Article  Google Scholar 

  • Khan, S. A., Mulvaney, R. L., Ellsworth, T. R., & Boast, C. W., (2007). The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 36, 1821–1832.

    Article  CAS  Google Scholar 

  • Kotowski, W., VanAndel, J., VanDiggelen, R., & Hogendorf, J. (2001). Responses of fen plant species to groundwater level and light intensity. Plant Ecology, 155, 147–156.

    Article  Google Scholar 

  • Kriebitzsch, W.-U., Beck, W., Schmitt, U., & Veste, M. (2008). Bedeutung trockener Sommer fɒr Wachstumsfaktoren von verschiedenen Herkɒnften der Rotbuche (Fagus sylvatica L). AFZ-Der Wald, 5, 246–248.

    Google Scholar 

  • Kruijt, B., Witte, J.-P. M., Jacobs C. M. J., & Kroon, T. (2007). Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology, 349, 257–267.

    Article  Google Scholar 

  • Kutzbach, L, Wille, C., & Pfeiffer, E.-M. (2007). The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences, 4, 869–890.

    Article  CAS  Google Scholar 

  • Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem. New York: Springer Verlag.

    Book  Google Scholar 

  • Ling, C., Handley, J., & Rodwell, J. (2007). Restructuring the post-industrial landscape: A multifunctional approach. Landscape Research, 32, 285–309.

    Article  Google Scholar 

  • Löf, M., Madsen, P., & Stanturf, J. (2008). Restaurering av sydsvensks lövskog – några tankar kring ett nytt skötselkoncept. Svensk Botanisk Tidskrift, 102, 43–51.

    Google Scholar 

  • Marschner, H. (1986). Mineral nutrition of higher plants. San Diego: Academic Press.

    Google Scholar 

  • Marshall, J. D., Brooks, J. R., & Lajtha, K. (2007). Source of variation of the stable isotopic composition in plants. In: Michener, R. & Lajtha, K. (Eds.), Stable isotopes in ecology and environmental science (pp. 1–21). Oxford: Blackwell Publishing.

    Google Scholar 

  • Nii-Annang, S. A., Grünewald, H., Freese, D., Hüttl, R. F., & Dilly, O. (2009). Microbial activity and soil quality in alley cropping systems after 9 years of recultivation of quaternary deposits in eastern Germany. Biology and Fertility of Soils. DOI 10.1007/s00374-009-0360-4.

    Google Scholar 

  • Nicolau, J. M. (2002). Runoff generation and routing on artificial slopes in a Mediterranean-continental environment: The Teruel coalfield, Spain. Hydrological Processes, 16, 631–647.

    Article  Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F. (2009). A safe operating space for humanity. Nature, 461, 472–475.

    Article  Google Scholar 

  • Romanovsky, V. E., Burgess, M., Smith, S., Yoshikawa, K., & Brown, J. (2002). Permafrost temperature records: Indicators of climate change. Earth Observing System Transactions, American Geophysical Union, 83, 589.

    Article  Google Scholar 

  • Rosenthal, G. (1992). Erhaltung und Regeneration von Feuchtwiesen. – Dissertationes Botanicae 182. Berlin: Cramer.

    Google Scholar 

  • Rosenthal, G., Hildebrandt, J., Zöckler, C., Hengstenberg, M., Mossakowski, D., Lakomy, W., et al. (1998). Feuchtgrünland in Norddeutschland. Ökologie, Zustand, Schutzkonzepte. Münster: Bundesamt für Naturschutz.

    Google Scholar 

  • Sach, W., & Schrautzer, J. (1994). Phytomasse- und Nährstoffdynamik sowie floristische Veränderungen von Knickfuchsschwanz-Flutrasen (Ranunculo-Alopecuretum geniculati Tx. 37) unter extensiver Nutzung. Flora, 189, 37–50.

    Google Scholar 

  • Schaaf, W. (2001). What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering, 17, 241–252.

    Article  Google Scholar 

  • Schaaf, W. (2003). Leaching induced changes in substrate and solution chemistry of mine soil microcosms. Water, Air and Soil Pollution – Focus, 3, 139–152.

    Article  CAS  Google Scholar 

  • Schaaf, W., Gast, M., Wilden, R., Scherzer, J., Blechschmidt, R., & Hüttl, R. F. (1999). Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant and Soil, 213, 169–179.

    Article  CAS  Google Scholar 

  • Schaaf, W., Neumann, C., & Hüttl, R. F. (2001). Actual cation exchange capacity in lignite containing pyritic mine soils. Journal of Plant Nutrition and Soil Science, 164, 77–78.

    Article  CAS  Google Scholar 

  • Schopp-Guth, A. (1997). Die Zusammensetzung des Diasporenpotentials unter Niedermoorböden Nordostdeutschlands. Zeitschrift für Ökologie und Naturschutz, 2, 87–98.

    Google Scholar 

  • Schrautzer, J., Irmler, U., Jensen, K. Nötzold, R., & Holsten, B. (2004). Auswirkungen großflächiger Beweidung auf die Lebensgemeinschaften eines nordwestdeutschen Flusstales. Schriftenreihe für Landschaftspflege und Naturschutz, 78, 39–62.

    Google Scholar 

  • Schrautzer, J., & Jensen, K. (2006). Relationship between light availability and species richness during fen grassland succession. Nordic Journal of Botany, 24, 341–353.

    Article  Google Scholar 

  • Schrautzer, J., Jensen, K., Holsten, B., Irmler, U., Kieckbusch, J., Noell, C., et al. (2002). The Eidertal pasture landscape – Mire restoration and species conservation in a river valley of Schleswig-Holstein (northwest Germany). In: Redecker, B., Finck, P., Härdtle, W., Riecken, U., & Schröder, E. (Eds.), Pasture landscapes and nature conservation (pp. 227–237). Berlin: Springer.

    Chapter  Google Scholar 

  • SEC. (2006). Thematic Strategy for Soil Protection. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Retrieved from http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexplus!prod!DocNumber&lg=en&type_doc=COMfinal&an_doc=2006&nu_doc=231.

  • Smith, P., Smith, U. J., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., et al. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81, 153–222.

    Article  Google Scholar 

  • Stanturf, J., & Madsen, P. (Eds.). (2005). Restoration of boreal and temperate forests. Boca Raton: CRC Press.

    Google Scholar 

  • Walker, L. R., & Willig, M. R. (1999). An introduction to terrestrial disturbance. In: Walker, L. R. (Ed.), Ecosystems of disturbed grounds. Ecosystems of the world 16 (pp.1–16). Amsterdam: Elsevier.

    Google Scholar 

  • Weisdorfer, M., Schaaf, W., Blechschmidt, R., Schütze, J., & Hüttl, R. F. (1998). Soil chemical response to drastic reductions in deposition and its effects on the element budgets of three Scots pine ecosystems with different pollution history in NE-Germany. In: Hüttl, R. F. & Bellmann, K. (Eds.), Changes in atmospheric chemistry and effects on forest ecosystems. Nutrients in Ecosystems (pp. 187–225, Vol. 3). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Wille, C., Kutzbach, L., Sachs, T., Wagner, D., & Pfeiffer, E.-M. (2008). Methane emission from Siberian arctic polygonal tundra: Eddy covariance measurements and modelling. Global Change Biology, 14, 1395–1408.

    Article  Google Scholar 

  • Wilmking, M., D'Arrigo, R., Jacoby, G., & Juday, G. (2005). Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophysical Research Letters, 32(15), L15715.1–L15715.4.

    Article  Google Scholar 

  • Wright, R. F., Lotse, E., & Semb, A., (1994). Experimental acidification of Alpine catchments at Sogndal, Norway: Results after 8 years. Water, Air & Soil Pollution, 72, 297–315.

    Article  CAS  Google Scholar 

  • Wucherer, W., Veste, M., Herrera-Bonilla, O., & Breckle, S.-W. (2005). Halophytes as useful tools for rehabilitation of degraded lands and soil protection. Proceedings of the First International Forum on Ecological Construction of the Western Beijing, Beijing (pp. 87–94). Retrieved February 2008 from http://www.desertconsult.de/PDF/62Halopyhten%20as%20tools_Bejing2005.pdf.

  • Zerbe, S., & Wiegleb, G. (2008). Renaturierung von Ökosystemen in Mitteleuropa. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Zyakun, A., & Dilly, O. (2005). Respiratory quotient and priming effect in an arable soil induced by glucose. Applied Biochemistry and Microbiology, 41, 512–520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Integrated EU Project “Sustainability Impact Assessment: Tools for Environmental, Social and Economic Effects of Multifunctional Land Use in European Regions – SENSOR”, the German Research Foundation (SFB/TRR 38), the Brandenburg Ministry for Science, Research and Culture and Vattenfall Europe Mining AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Dilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dilly, O. et al. (2010). Ecosystem Manipulation and Restoration on the Basis of Long-Term Conceptions. In: Müller, F., Baessler, C., Schubert, H., Klotz, S. (eds) Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_28

Download citation

Publish with us

Policies and ethics