Skip to main content

Biochemistry of Amazonian Floodplain Trees

  • Chapter
  • First Online:
Book cover Amazonian Floodplain Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 210))

Abstract

Trees colonizing Central Amazonian floodplains are subjected to extended periods of waterlogging and submersion surviving up to seven months of flooding per year. Flood is a consequence of changes in water level of ca. 10 m in the largest rivers of the region, and leads to a fast depletion of oxygen in the soil modifying the metabolism of the plants. Flooding tolerance varies between species and ecotypes as well as the biochemical traits and processes allowing the survival and adaptation of plant species. This results in a typical substitution of plant communities in these environments according to the depth of inundation. Amongst the developed metabolic adjustments and growth strategies and adaptations plants may show wood-ring formation, indicating annual growth reduction related to the inundation phase. The reduction of growth is preceded by stomatal closing, degradation of leaf chlorophyll, decrease of photosynthetic rates, carbohydrate translocation, and alteration of the hormonal balance. Floodplain trees develop as well protection mechanisms which can diminish damages caused by the long lasting annual hypoxia or even anoxia. Although the majority of woody plants can support periods of anoxia varying between a few hours to some days, in non-adapted species, irreversible damages can be caused leading to the death of the roots, when longer periods of flooding are imposed. These damages are attributed to the accumulation of toxic end products of the anaerobic metabolism, the loss of metabolic energy or the lack of respiration substrate. All and all the adaptations described at the biochemical level for temperate tree species inhabiting wetland are found in Amazonian floodplain trees; however, they are not enough to explain plant survival. This indicates the existence of novel mechanisms still to be found which together with the fate of the tree species inhabiting Amazonian floodplains in a changing climate are the main challenges faced by wetland scientists in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidar MPM, Martinez CA, Costa AC, Costa PMF, Dietrich SMC, Buckeridge MS (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá, Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) Biota Neotropica 2(1). http://www.biotaneotropica.org.br/v2n1/en/abstract?article+BN01602012002

  • Ainsworth EA, Davey PA, Bernacch CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoora HS, Zhu XG, Curtins P, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8:695–709

    Article  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Barrios E, Herrera R (1994) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. J Trop Ecol 10:399–416

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot 90:179–194

    Article  Google Scholar 

  • Buckeridge MS, Mortari LC, Machado MR (2007) Respostas fisiológicas de plantas às mudanças climáticas: alterações no balanço de carbono nas plantas podem afetar o ecossistema? In: Rego GM, Negrelle RR, Morellato LPC (org.). Fenologia – Ferramenta pra a conservação e manejo de recursos vegetais arbóreos. Colombo, PR: Embrapa, pp 213–230

    Google Scholar 

  • Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, London, pp 119–136

    Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Experiment Bot 47(295):145–159

    Article  CAS  Google Scholar 

  • De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmitt W (2002a) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035

    Article  Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Experiment Bot 51(342):89–97

    Article  CAS  Google Scholar 

  • Drew MC, He C, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 3(5):123–127

    Article  Google Scholar 

  • Ellis MH, Dennis ES, James W (1999) Arabdopsis root and shoots have different mechanisms for hipoxic stress tolerance. Plant Physiol 119(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2916–2919

    Google Scholar 

  • Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95

    Google Scholar 

  • Ferreira CS (2006) Aspectos morfo-anatômicos, bioquímicos e genéticos de de Himatanthus sucuuba, em ambiente de várzea e de terra firme da Bacia Amazônica. Ph.D. thesis, CAPES, INPA/UFAM, Manaus

    Google Scholar 

  • Ferreira CS, Piedade MTF, Bonates LC (2006) Germinação de sementes e sobrevivência de plântulas de Himatanthus sucuuba (Spruce) Wood. em resposta ao alagamento, nas várzeas da Amazônia Central. Acta Amazonica 36:413–418

    CAS  Google Scholar 

  • Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Experiment Bot 60(3):477–483

    Article  Google Scholar 

  • Ferreira CS, Piedade MTF, Franco A, Gonçalves JFC, Junk WJ (2008) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquat Bot 1:1–7

    Google Scholar 

  • Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (2010) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Ferreira LV (2000) Effect of flooding duration on species richness, floristic composition and forest structure in river margin habitats in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodivers Conserv 9:1–14

    Article  CAS  Google Scholar 

  • Fiedler S, Sommer M (2004) Water and redox conditions in wetland soils – their influence on pedogenic oxides and morphology. Soil Sci Soc Am 68:326–335

    Article  CAS  Google Scholar 

  • Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128

    Google Scholar 

  • Gaston S, Zabalza A, González EM, Arrese-Igor C, Aparicio-Tejo PM, Royuela M (2002) Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants. Physiol Plant 114:524–532

    Article  PubMed  CAS  Google Scholar 

  • Gill CJ (1970) The flooding tolerance of woody species – a review. Forest Abstr 31(4):671–688

    Google Scholar 

  • Good AG, Crosby WL (1989) Anaerobic Induction of Alanine Aminotransferase in Barley Root Tissue. Plant Physiol 90:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Graffmann KC, Grosse W, Junk WJ, Parolin P (2008) Pressurized gas transport in Amazonian floodplain trees. Environ Experiment Bot 62:371–375

    Article  CAS  Google Scholar 

  • Gut A, Scheibe M, Rottenberger S, Rummel U, Welling M, Ammann A, Kirkman G, Kuhn U, Meixner FX, Kesselmeier J, Lehmann BE, Schmidt W, Miller E, Piedade MTF (2002) Exchange fluxes of the NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res 107(20):1–15

    Google Scholar 

  • Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Phys 23:1069–1076

    Article  Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. London, Academic Press, p 356

    Google Scholar 

  • Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emissions of volatile organic compounds from Quercus ilex L. measured by Proton transfer reaction mass spectrometry under different environmental conditions. J Geophys Res -Atmos 105(D16):20/573–579

    Google Scholar 

  • Hormaetxe K, Esteban R, Becerril JM, García-Plazaola JI (2005) Dynamics of the α-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiologia Plantarum 125:333–344

    Article  CAS  Google Scholar 

  • Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809

    Article  Google Scholar 

  • Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64

    Google Scholar 

  • Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739

    Google Scholar 

  • Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 119–135

    Chapter  Google Scholar 

  • Kern J, Kreibich H, Koschorreck M, Darwich A (2010) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmosph Chemis 39(3):219–233

    Article  CAS  Google Scholar 

  • Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31(SI):119–134

    Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:840–847

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW, MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84:1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Doferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Kotzias D, Konidari C, Sparta C (1997) Volatile carbonyl compounds of biogenic origin – emission and concentration in the atmosphere. In: Helas G, Slanina J, Steinbrecher R (eds) Biogenic volatile organic Carbon compounds in the atmosphere. SPB Academic Publishing, Amsterdam, pp 67–78

    Google Scholar 

  • Kozlowski TT (1984a) Plant response to flooding of soil. BioScience 34(3):162–167

    Article  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29

    Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P-alba) trees. J Exp Bot 50(335):757–765

    CAS  Google Scholar 

  • Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in Neotropical tree species. Oecologia Brasiliensis 4:137–156

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort D (2006) Food for thought: lower-than-expected crop yield simulation with rising CO2 concentrations. Science 312:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Martius C (1997) The termites. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecol Stud 126:362–371. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Medri ME, Ferreira ACS, Kolb RM, Bianchini E, Pimenta JA, Davanso-Fabro VM, Medri C (2007) Alterações morfoanatômicas em plantas de Lithraea molleoides (Vell.) Engl. submetidas ao alagamento. Acta Scientiarum (29):15–22

    Google Scholar 

  • Megonigal JP, Vann CD, Wolf AA (2005) Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2. Wetlands 25:430–438

    Article  Google Scholar 

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biol 10(5):530–544

    Article  Google Scholar 

  • Menezes Neto MA (1994) Influência da disponibilidade de oxigênio sobre a germinação, crescimento, e atividade das enzimas álcooldesidrogenase e lactato desidrogenase em Açaí (Euterpe oleracea Mart.). Dissertação de Mestrado, Escola Superior de Agricultura de Lavras, Minas Gerais, Brasil, p 50

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New York

    Google Scholar 

  • Mommer L, Visser EJW (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annal Bot 96:581–589

    Article  CAS  Google Scholar 

  • Oliveira Wittmann A (2007) Conteúdo de tocromanóis em espécies arbóreas de várzea da Amazônia Central sob condições controladas. Tese INPA/UFAM, p 126

    Google Scholar 

  • Parolin P (1998) Floristic composition and structure of two stands of Senna reticulata differing in age. Amazoniana 15(1/2):113–128

    Google Scholar 

  • Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335

    Article  Google Scholar 

  • Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annal Bot Flood Spec Issue 103:359–376

    Article  Google Scholar 

  • Parolin P, Armbrüster N, Junk WJ (2002a) Seasonal changes of leaf nitrogen content in trees of Amazonian floodplains. Acta Amazonica 32(2):231–240

    CAS  Google Scholar 

  • Parolin P, Adis J, Rodrigues WA, Amaral I, Piedade MTF (2004a) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18(1/2):29–47

    Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139

    Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos T Roy Soc B 363:1819–1827

    Article  Google Scholar 

  • Piedade MTF, Worbes M, Junk WJ (2001) Geo-ecological controls on elemental fluxes in communities of higher plants in Amazonian floodplains. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, p 209–234

    Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 9–45

    Google Scholar 

  • Rottenberger S (2003) Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and atmosphere. Ph.D. thesis, University of Mainz

    Google Scholar 

  • Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk J, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences (Katlenburg-Lindau) (5):1085–1100

    Google Scholar 

  • Santiago EF, Paoli AS (2007) Morphological responses in Guibourtia hymenifolia (Moric.) J. Leonard (Fabaceae) and Genipa americana L. (Rubiaceae) to nutrient deficit and flooding stress. Revista Brasileira de Botanica 30(1)

    Google Scholar 

  • Schlüter UB, Furch B (1992) Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des Baumes Macrolobium acaciaefolium, charakteristisch für die Weißund Schwarzwasser-Überschwemmungswälder bei Manaus, Amazonas. Amazoniana 12:51–69

    Google Scholar 

  • Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25(4):384–396

    Article  Google Scholar 

  • Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378:50–54

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2004) Fisiologia vegetal. Trad. Eliane Romanato Santarém 3a. ed.– Porto Alegre. Artmed. p 719

    Google Scholar 

  • Talbot RW, Andreae MO, Berresheim H, Jacob DJ, Beecher KM (1990) Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia.2. Wet Season. J Geophys Res Atmos 95:16799–16811

    Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere – probable past and future changes. Science 256:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding – sensing and signal-tranduction. Plant Soil 254:197–214

    Google Scholar 

  • Voesenek LACJ, Banga M, Rijnders JGHM, Visser EJW, Blom CWPM (1996) Hormone sensitivity and plant adaptations to flooding. Folia Geobotanica 31(1):47–56

    Article  Google Scholar 

  • Waldhoff D, Furch B, Junk WJ (2002) Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environ Experimen Bot 48(3):225–235

    Article  CAS  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a met analytic test for current theories and perceptions. Global Change Biol 5:723–741

    Article  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of senescence by citokinin, sugars and light. Plant Physiol 116:329–335

    Article  CAS  Google Scholar 

  • Wittmann F (2001) Artenverbreitung und Bestandesstruktur in amazonischen Várzea-Wäldern und Möglichkeiten der Erfassung von Waldtypen mittels fernerkundlichen Methoden. Ph.D. thesis, Universität Mannheim, Fachbereich Geographie

    Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18: 805–820

    Article  Google Scholar 

  • Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112

    Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New York

    Google Scholar 

Download references

Acknowledgments

This study was supported by FAPEAM/CNPq – PRONEX “Tipologias Alagáveis”, by the INPA/Max-Planck Project and the SHIFT Program ENV-29 Project (CNPq-BMBF). The Instituto Nacional de Pesquisas da Amazônia provided logistic support. We acknowledge Celso Rabelo Costa and Valdeney Azevedo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. F. Piedade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Piedade, M.T.F., Ferreira, C.S., Wittmann, A.d.O., Buckeridge, M., Parolin, P. (2010). Biochemistry of Amazonian Floodplain Trees. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_6

Download citation

Publish with us

Policies and ethics