Skip to main content

Clustering of Expressed Sequence Tag Using Global and Local Features: A Performance Study

  • Chapter
  • First Online:
Intelligent Automation and Computer Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 52))

  • 774 Accesses

Abstract

Clustering of expressed sequence tag (EST) plays an important role in gene analysis. Alignment-based sequence comparison is commonly used to measure the similarity between sequences, and recently some of the alignment-free comparisons have been introduced. In this paper, we evaluate the role of global and local features extracted from the alignment free approaches i.e., the compression-based method and the generalized relative entropy method. The evaluation is done from the perspective of EST clustering quality. Our evaluation shows that the local feature of EST yields much better clustering quality compared to the global feature. Furthermore, we verified our best clustering result achieved in the experiments with another EST clustering algorithm, wcd, and it shows that our performance is comparable to the later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ptitsyn, A., & Hide, W. (2005). CLU: A new algorithm for EST clustering. BMC Bioinformatics, 6. doi:10.1186/1471-2105-6-S2-S3.

  2. Malde, K., Coward, E., & Jonassen, I. (2005). A graph based algorithm for generating EST consensus sequences. Bioinformatics, 21(8), 1371–1375.

    Article  Google Scholar 

  3. Hide, W., Miller, R., Ptitsyn, A., Kelso, J., Gopallakrishnan, C., & Christoffels, A. (1999). EST clustering tutorial. SANBI.

    Google Scholar 

  4. Burke, J.P., Wang, H., Hide, W., & Davison, D. (1998). Alternative gene form discovery and candidate gene selection from gene indexing projects. Genome Research, 8, 276–290.

    Google Scholar 

  5. Haas, S.A., Beissbarth, T., Ribals, E., Krause A., & Vingron, M. (2000). GeneNest: Automated generation and visualization of gene indices. Trends Genetics, 16, 521–523.

    Article  Google Scholar 

  6. Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman, D. (1990). A basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Google Scholar 

  7. Lipman, D.J., & Pearson, W.R. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America, 85(8), 2444–2488.

    Article  Google Scholar 

  8. Sutton, G., White, O., Adams, M.D., & Kerlavage, A.R. (1995). TIGR assembler: A new tool for assembling large shotgun sequencing projects. Genome Science Technology, 1, 9–18.

    Article  Google Scholar 

  9. Boguski, M.S., & Schuler, G.D. (1995). Establishing a human transcript map. National Genetics, 10, 369–371.

    Article  Google Scholar 

  10. Vinga, S., & Almeida, J. (2003). Alignment-free sequence comparison – a review. Bioinformatics, 19(4), 513–523.

    Article  Google Scholar 

  11. Mantaci, S., Restivo, A., & Sciortino, M. (2008). Distance measures for biological sequences: Some recent approaches. International Journal of Approximate Reason, 47, 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. Burke, J., Davison, D., & Hide, W. (1999). d2_cluster: A validated method for clustering EST and full length cDNA sequences. Genome Research, 9, 1135–1142.

    Article  Google Scholar 

  13. Hazelhurst, S. (2008). Algorithms for clustering expressed sequence tag: The wcd tool. South African Computer Journal, 40, 51–62.

    Google Scholar 

  14. Malde, K., Coward, E., & Jonassen, I. (2003). Fast sequence clustering using a suffix array algorithm. Bioinformatics, 19(10), 1221–1226.

    Article  Google Scholar 

  15. Wu, X., Lee, W.J., Gupta, D., & Tseng, C.W. (2005). ESTmapper: Efficiently clustering EST sequences using genome maps. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, 196a. doi:10.1109/IPDPS:2005.204.

    Google Scholar 

  16. Blaisdell, B.E. (1986). A measure of the similarity of sets of sequences not requiring sequence alignment. Proceedings of the National Academy of Sciences of the United States of America, 83, 5155–5159.

    Article  MATH  Google Scholar 

  17. Pevzner, P.A. (1992). Statistical distance between texts and filtration methods in sequence comparison. Computer Applications in the Biosciences, 8, 121–127.

    Google Scholar 

  18. Petrilli, P. (1993). Classification of protein sequences by their dipeptide composition. Computer Applications in the Bioscience, 9, 205–209.

    Google Scholar 

  19. Wu, T.J., Hsieh, Y.C., & Li, L.A. (2001). Statistical measures of DNA sequence dissimilarity under Markov chain models of base composition, Biometrics, 57, 441–448.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ziv, J., & Merhav, N. (1993). A measure of relative entropy between individual sequences with application to universal classification. IEEE Transactions on Information Theory, 39(4), 1270–1279.

    Article  MathSciNet  MATH  Google Scholar 

  21. Otu, H.H., & Sayood, K. (2003). A new sequence distance measure for phylogenetic tree construction. Bioinformatics, 19(16), 2122–2130.

    Article  Google Scholar 

  22. Dong, G., & Pei, J. (2007). Classification, clustering, features and distances of sequence Data. Sequence Data Mining, 33, Springer US, 47–65. doi:10.1007/978-0-387-69937-0.

  23. Ma, C.H., Chan, C.C., Yao, X., & Chiu, K.Y. (2006). An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Transactions on Evolutionary Computation, 10, 296–314.

    Article  Google Scholar 

  24. Handl, J., Knowles, J., & Dorigo, M. (2003). Ant-based clustering: A comparative study of its relative performance with respect to k-means, average link and 1d-som. Technical Report TR/IRIDIA/2003-24, IRIDIA, http://dbkgroup.org/handl/TR-IRIDIA-2003-24.pdf.

  25. Tamayo, P., Slonim, D., Mesiov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., & Golub, T.R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 2907–2912.

    Article  Google Scholar 

  26. Xu, Y., Olman, V., & Xu, D. (2002). Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics, 18(4), 536–545.

    Article  Google Scholar 

  27. Zhou, D., He, Y., Kwoh, C.K., & Wang, H. (2007). Ant-MST: An ant-based minimum spanning tree for gene expression data clustering. LNBI, 4774, 198–205.

    Google Scholar 

  28. Smit, A.F.A., Hubley, R., & Green, P. (2004). RepeatMasker Open-3.0, 2004, http://www.repeatmasker.org.

  29. Russell, D.J., Otu, H.H., & Sayood, K. (2008). Grammar-based distance in progressive multiple sequence alignment. BMC Bioinformatics, 9, 306. doi:10.1186/1471-2105-9-306.

    Article  Google Scholar 

  30. Tai, Q., & Wang, T. (2008). Comparison study on k-word statistical measures for protein: From sequence to sequence space. BMC Bioinformatics, 9, 394. doi:10.1186/1471-2105-9-394.

    Article  Google Scholar 

  31. Hathaway, R.J. & Bezdek, J.C. (2003). Visual cluster validity for prototype generator clustering models. Pattern Recognition Letters, 24, 1563–1569.

    Article  MATH  Google Scholar 

  32. Rudd, S. (2003). Expressed sequence tags: alternative or complement to whole genome sequence? Trends in Plant Science, 8(7), 321–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng-Hoong Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ng, KH., Phon-Amnuaisuk, S., Ho, CK. (2009). Clustering of Expressed Sequence Tag Using Global and Local Features: A Performance Study. In: Huang, X., Ao, SI., Castillo, O. (eds) Intelligent Automation and Computer Engineering. Lecture Notes in Electrical Engineering, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3517-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3517-2_31

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3516-5

  • Online ISBN: 978-90-481-3517-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics