Skip to main content

Stable Isotopes in Large Scale Hydrological Applications

  • Chapter
  • First Online:
Isoscapes

Abstract

Measurement and modeling of the stable isotope signature of water in continental runoff provides unique information for large scale hydrological process studies and global water budget assessment. This chapter presents theory and case studies that illustrate isotopic signals relevant to understanding large scale hydrological processes. We provide examples illustrating isotopic labeling arising from isotopically varying runoff sources, open-water evaporation from lakes and wetlands, and river channel evaporation. Incorporation of isotopes in global and regional distributed runoff models may support the formal implementation of water isotopes as tools for monitoring large scale changes in continental water budgets and for model validation, but this work will require more comprehensive monitoring efforts for both surface water and meteoric precipitation isotopic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsdorf DE, Lettenmaier DP, Vörösmarty CJ, the NASA Surface Water Working Group (2003) The need for global, satellite-based observations of terrestrial surface waters. AGU EOS Trans 84(269):275–276

    Google Scholar 

  • Baumgartner A, Reichel E (1975) The world water balance. Elsevier, Amsterdam

    Google Scholar 

  • Bennett KE, Gibson JJ, McEachern P (2008) Water yield estimates for critical loadings assessment: comparisons of gauging methods vs. an isotopic approach. Can J Fish Aquat Sci 65:83–99

    Article  Google Scholar 

  • Birks SJ, Gibson JJ, Gourcy L, Aggarwal PK, Edwards TWD (2002) Maps and animations offer new opportunities for studying the global water cycle. AGU EOS Trans 83(37):406

    Article  Google Scholar 

  • Bjerklie DM, Dingman SL, Vörösmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278:17–38

    Article  Google Scholar 

  • Bowen GJ (2008) Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J Geophys Res 113:D05113

    Article  Google Scholar 

  • Bowen GJ, Cerling TE, Ehleringer JR (2007a) Stable isotopes and human water resources: signals of change. In: Dawson TE, Siegwolf R (eds) Stable isotopes as indicators of ecological change. Elsevier, Amsterdam, pp 285–300

    Google Scholar 

  • Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE (2007b) Stable isotope ratios of tap water in the contiguous USA. Water Resour Res 43:W03419

    Article  Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299

    Article  Google Scholar 

  • Browning, KA, Gurney RJ (1999) Global energy and water cycles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ciais P, Jouzel P (1994) Deuterium and oxygen-18 in precipitation: isotopic model, including mixed cloud processes. J Geophys Res 99(D8): 16793–16803

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Cole JE, Rind RS, Fairbanks RG (1993) Isotopic responses to interannual climate variability simulated by an atmospheric general circulation model. Guaternary Sci Rev 12:387–406

    Article  Google Scholar 

  • Cole JE, Rind RS, Jouzel J, Healy R (1999) Climate controls on the interannual variability of precipitation O-18: simulated influence of temperature, precipitation amount, and vapor source region. J Geophys Res 104:14223–14235

    Article  Google Scholar 

  • Coplen TB, Kendall C (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. geological survey’s NASQAN and benchmark surface-water networks.

    Google Scholar 

  • Cooper LW, McClelland JW, Holmes RM, Raymond PA, Gibson JJ, Guay CK, Peterson BJ (2008) Flow-weighted values of runoff tracers (δ18O, and concentrations of DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophys Res Lett 35. doi: 10.1029/2008GL035007.

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  CAS  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variation in the ocean and the marine atmosphere. Mar Geochem 3:277–374

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC (2005) Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous United States. Hydrol Process 19:4121–4146

    Article  CAS  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biochem Cycles 16(3):15–16

    Article  Google Scholar 

  • Fekete BM, Gibson JJ, Aggarwal P, Vörösmarty CJ (2006) Application of isotope tracers in continental scale hydrological modeling. J Hydrol 330:444–456

    Article  Google Scholar 

  • Friedman I, Redfield AC, Schoen B, Harris J (1964) The variation of the deuterium content of natural waters in the hydrological cycle. Rev Geophys 2:177–224

    Article  CAS  Google Scholar 

  • Gat JR (1980) The isotopes of hydrogen and oxygen in precipitation. In: Fritz P, Fontes J-Ch (eds) Handbook of environmental isotope geochemistry, vol. 1, the terrestrial environment. A. Elsevier, Amsterdam, pp 21–48

    Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrological cycle. Annu Rev Earth Planet Sci 24:225–262

    Article  CAS  Google Scholar 

  • Gat JR (2000) Atmospheric water balance – the isotopic perspective. Hydrol Process 14(8): 1367

    Google Scholar 

  • Gat JR, Airey P (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global Planet Change 51:25–33

    Article  Google Scholar 

  • Gat JR, Gonfiantini R (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. IAEA technical report series #210. Vienna, 337 p

    Google Scholar 

  • Gat JR, Bowser CJ, Kendall C (1994) The contribution of evaporation from the Great Lakes to the continental atmosphere; estimate based on stable isotope data. Geophys Res Lett 21:556–560

    Article  Google Scholar 

  • Gibson JJ, Aggarwal P, Hogan J, Kendall C, Martinelli LA, Stichler W, Rank D, Goni I, Choudhry M, Gat J, Bhattacharya S, Sugimoto A, Fekete B, Pietroniro A, Maurer T, Panarello H, Stone D, Seyler P, Maurice-Bourgoin D, Herczeg A (2002) Isotope studies in large river basins: a new global research focus. AGU EOS Trans 83(52): 613, 616–617

    Google Scholar 

  • Gibson JJ, Prowse TD (2000) ISOBALANCE special issue. Hydrol Process 14(8):1341–1536

    Article  Google Scholar 

  • Gibson JJ, Sadek MA, Stone DJM, Hughes C, Hankin S, Cendon DI, Hollins SE (2008a) Evaporative isotopic enrichment as a constraint on reach water balance along a dryland river. Isot Environ Health Stud 44:83–98

    Article  CAS  Google Scholar 

  • Gibson JJ, Birks SJ, Edwards TWD (2008b) Global prediction of δA and δ2H-δ18O evaporation slopes for lakes and soil water accounting for seasonality. Global Biochem Cycles 22: GB2031. doi: 10.1029/2007GB002997

    Google Scholar 

  • Gibson JJ, Edwards TWD (2002) Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Global Biogeochem Cycles 16(2). 1026, doi:10.1029/2001GB001839

    Google Scholar 

  • Henderson-Sellers A, McGuffie K, Noone D, Irannejad P (2005) Using stable water isotopes to evaluate Basin-Scale Simulations of Surface Water Budgets. J Hydrometeorol 5:805–822

    Article  Google Scholar 

  • Hirsch RM (2001) Water quality of large U.S. rivers: results from the U.S. Geological Survey’s National Stream Quality Accounting Network. Hydrol Process 17(7):1085–1414

    Google Scholar 

  • Hoffmann G, Jouzel J, Masson V (2000) Stable water isotopes in atmospheric general circulation models. Hydrol Process 14:1385–1406

    Article  Google Scholar 

  • Hoffmann G, Werner M, Heimann M (1998) The water isotope module of the ECHAM atmospheric general circulation model – a study on time scales from days to several years. J Geophys Res 103(D14):16871-16896

    Google Scholar 

  • Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modelling of the isotopic effects during snow formation. J Geophys Res 89:11749–11757

    Article  CAS  Google Scholar 

  • Jouzel J, Hoffman G, Koster RD, Masson V (2000) Water isotopes in precipitation: data/model comparison for present-day and past climates. Quatern Sci Rev 19(1–5):363–379

    Article  Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier Science B. V., Amsterdam

    Google Scholar 

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  • Korzoun VI, Sokolov AA, Budyko MI, Voskrensensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES, L’vovich MI (1978) Atlas of the World Water Balance. UNESCO, Paris, France

    Google Scholar 

  • Koster RD, de Valpine DP, Jouzel J (1993) Continental water recycling and H 182 O concentrations. Geophys Res Lett 20(20):2215–2218

    Article  CAS  Google Scholar 

  • L’vovich MI, White GF, Belyaev AV, Kindler J, Koronkevic NI, Lee TR, Voropaev GV (1990) Use and transformation of terrestrial water systems.

    Google Scholar 

  • Lykoudis SP, Argiriou AA (2007) Gridded data set of the stable isotopic composition of precipitation over the eastern and central Mediterranean. J Geophys Res 112:D18107

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygéne-18 at en deuterium entre l’eau et la vapeur. J Chem Phys 68:1423–1436

    CAS  Google Scholar 

  • McClelland JM, Holmes RM, Peterson BJ, Amon R, Brabets T, Cooper LW, Gibson JJ, Gordeev VV, Guay CK, Mulburn D, Raymond PA, Shiklomanov I, Staples R, Striegl R, Zhulidov AV, Zimov SA (2008) Development of a Pan-Arctic Database on for River Chemistry. AGU EOS Trans 89(24). doi:10.1029/2008EO240001

    Google Scholar 

  • McGuire KJ et al (2005) The role of topography on catchment-scale water residence time. Water Resour Res 41:W05002

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res-Atmos 84(NC8) 5029–5033

    Google Scholar 

  • Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP). J Meterorol Soc Jpn 77(1):235–255

    Google Scholar 

  • Raschke E, Meywerk J, Warrach K, Andrea U, Bergstroem S, Beyrich F, Bosveld F, Bumke K, Fortelius C, Graham LP, Gryning SE, Halldin S, Hasse L, Heikinheimo M (2001) The Baltic Sea Experiment (BALTEX): a European contribution to the investigation of the energy and water cycle over a large drainage basin. Bull Am Meteorol Soc 82(11):2389–2414

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Isotope records, American Geophysical Union 1–36

    Google Scholar 

  • Shiklomanov AI, Lammers RB, Vörösmarty CJ (2002) Widespread decline in hydrological monitoring threatens pan-Arctic research. AGU EOS Trans 83:16–17

    Google Scholar 

  • Vitvar T, Aggarwal PK, Herczeg AL (2007) Global network is launched to monitor isotopes in rivers. AGU EOS Trans 88(33):325

    Article  Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Brauer J, Jouzel J, Johnsen S (1999) A mid-European decadal isotope-climate record from the 15, 500 to 5000 years B.P. Science 284:1654–1657

    Article  Google Scholar 

  • Vörösmarty CJ, Askew A, Barry R, Birkett C, Döll P, Grabs W, Hall A, Jenne R, Kitaev L, Landwehr J, Keeler M, Leavesley G, Schaake J, Strzepek K, Sundarvel SS, Takeuchi K, Webster F (2002) Global water data: a newly endangered species. AGU EOS Trans 82(5):54,56,58

    Google Scholar 

  • Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Global Biochem Cycles 14(2):599–621

    Article  Google Scholar 

  • Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207:147–169

    Article  Google Scholar 

  • Worden J, Noone D, Bowman K, the Tropospheric Emission Spectrometer science team and data contributors (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445: 528–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gibson, J.J., Fekete, B.M., Bowen, G.J. (2010). Stable Isotopes in Large Scale Hydrological Applications. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_18

Download citation

Publish with us

Policies and ethics