Skip to main content

Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

The diversity of lipids in thylakoid membranes and their unique characteristics, in addition to their specific orientation in these membranes, strongly suggest that they play specific and important roles in the thylakoid membrane. In the chloroplasts of plants and algae, as well as in cyanobacterial cells, most of the photosyn-thetic machinery is embedded in thylakoid membranes, which are composed of proteins, lipids and pigments. Alterations in the extent of unsaturation of fatty acids in membrane lipids are expected to affect the physical characteristics of the membranes and, consequently, the activities of the photosynthetic machinery. The availability of entire genome sequences and an understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria led to the successful site-directed mutagenesis of such genes that reduced the extent of unsaturation of fatty acids in membrane lipids in a step-wise manner and, also, to the genetic transformation of cyanobacterial cells and whole plants that increased the extent of unsaturation of fatty acids in lipids of thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that polyunsaturated fatty acids are essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. Moreover, the available evidence suggests that the unsaturation of fatty acids enhances the repair of the photosystem II complex that has been damaged by strong light under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl-carrier protein

DGDG:

Diga-lactosyldiacylglycerol

FTIR:

Fourier transform infrared

GPAT:

Glycerol-3-phosphate acyltransferase

MGDG:

Monogalactosyldiacyglycerol

PG:

Phosphatidylglycerol

PS I:

Photosystem I

PS II:

Photosystem II

SODG:

Sulfoquinovosyldiacylglycerol

X:Y(Z):

Fatty acid in which X and Y indicate numbers of carbon atoms and double bonds, respectively, and Z in parenthesis indicates the position of double bond as counted from the carboxyl terminus of the fatty-acyl chain.

References

  • Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI and Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Syn-echocystis sp. PCC 6803. Biochim Biophys Acta 1657: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI and Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98: 529–539

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y and Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96: 5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M and Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Syn-echococcus sp. Plant Physiol 123: 1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I and Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125: 1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Tsvetkova N, Mohanty P, Szalontai B, Moon BY, Debreczeny M and Murata N (2005) Irreversible photoinhibition of photosystem II is caused by exposure of Synechocystis cells to strong light for a prolonged period. Biochim Biophys Acta 1708: 342–351

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N and Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43: 751–758

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allakhverdiyeva Y, Paakka-rinen V, Saleem A, Battchikova N and Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Barkan L, Vijayan P, Carlsson AS, Mekhedov S and Browse J (2006) A suppressor of fab1 challenges hypotheses on the role of thylakoid unsaturation in photosynthetic function. Plant Physiol 141: 1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, De-Felice J and Barber J (1983) Growth temperature effects on thylakoid membrane lipid and protein content of pea chloroplasts. Plant Physiol 72: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA, Nishiyama Y, Gombos Z and Murata N (2001) Bioenergetic responses of Synechocystis 6803 fatty acid desaturase mutants at low temperatures. J Bioenerg Biomembr 33: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV and Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot (Lond) 93: 483–497

    Article  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon T and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyl-transferase from pea and spinach chloroplasts. Eur J Bio-chem 129: 629–636

    Article  CAS  Google Scholar 

  • Frentzen M, Nishida I and Murata N (1987) Properties of the plastidial acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant squash (Cucurbita moschata). Plant Cell Physiol 28: 1195–1201

    CAS  Google Scholar 

  • Gombos Z and Murata N (1998) Genetic engineering of the unsaturation of membrane glycerolipid: effects on the ability of the photosynthetic machinery to tolerate temperature stress. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp. 249–262

    Google Scholar 

  • Gombos Z, Wada H and Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89: 9959–9963

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H and Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91: 8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM and Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115: 551–559

    PubMed  CAS  Google Scholar 

  • Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B and Klösgen RB (2006) Toc, Tic, Tat et al.: structure and function of protein transport machineries in chlo-roplasts. J Plant Physiol 163: 333–347

    Article  PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T and Tyys-tjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706: 68–80

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL (2007) Temperature stress: reacting and adapting: lessons from poikilotherms. Ann N Y Acad Sci 1113: 52–57

    Article  PubMed  CAS  Google Scholar 

  • Hugly S, Kunst L, Browse J and Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90: 1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Ohnishi M, Hotsubo K, Kojima M and Ito S (1997) Sphingoid base composition of cerebrosides from plant leaves. Biosci Biotechol Biochem 61: 351–353

    Article  CAS  Google Scholar 

  • Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H and Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278: 12191–12198

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T and Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Bio-technol 14: 1003–1006

    Article  CAS  Google Scholar 

  • Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D and Kachroo P (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63: 257–271

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J and Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Sac-charomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9: 1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Kanervo E, Aro EM and Murata N (1995) Low unsatura-tion level of thylakoid membrane lipids limits turnover of the D1 protein of photosystem II at high irradiance. FEBS Lett 364: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Kanervo E, Tasaka Y, Murata N and Aro EM (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114: 841–849

    Article  PubMed  CAS  Google Scholar 

  • Liu X-Y, Li B, Yang J-H, Sui N, Yang X-M and Meng Q-W (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. Photosyn-thetica 46: 185–192

    Article  CAS  Google Scholar 

  • Logue JA, de Vries AL, Fodor E and Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203: 2105–2114

    PubMed  CAS  Google Scholar 

  • Los DA and Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Los DA and Murata N (1999) Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol 1: 221–230

    PubMed  CAS  Google Scholar 

  • Los DA and Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666: 142–157

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Ray MK and Murata N (1997) Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol 25: 1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Ma X and Browse J (2006) Altered rates of protein transport in Arabidopsis mutants deficient in chloroplast membrane unsaturation. Phytochemistry 67: 1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Macartney AI, Maresca B and Cossins AR (1994) Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. In: Cossins AR (ed) Temperature Adaptation of Biological Membranes. Portland Press, London, pp. 129–139

    Google Scholar 

  • Mamedov MD, Hayashi H and Murata N (1993) Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorylation reactions in Synechocystis PCC 6803. Biochim Biophys Acta 1142: 1–5

    Article  CAS  Google Scholar 

  • Matsuda O, Sakamoto H, Hashimoto T and Iba K (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial μ-3 fatty acid desatu-rase (FAD8) in Arabidopsis leaf tissues. J Biol Chem 280: 3597–3604

    Article  PubMed  CAS  Google Scholar 

  • McCourt P, Kunst L, Browse J and Somerville CR (1987) The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol 84: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Miyao M and Murata N (1983) Partial disintegration and reconstitution of the photosynthetic oxygen-evolution system: binding of 24 kDa and 18 kDa polypeptides. Bio-chim Biophys Acta 725: 87–93

    Article  CAS  Google Scholar 

  • Mohanty P, Allakhverdiev SI and Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94: 217– 224

    Article  PubMed  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1989) Low-temperature effects on cyanobacterial membranes. J Bioenerg Biomembr 21: 61–75

    Article  PubMed  CAS  Google Scholar 

  • Murata N and Miyao M (1985) Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 10: 122–124

    Article  CAS  Google Scholar 

  • Murata N and Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1–8

    PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y and Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713; (correction) 357: 607

    Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y and Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767: 414–421

    Article  PubMed  CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541– 568

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, Frentzen M, Ishizaki O and Murata N (1987) Purification of isomeric forms of acyl-[acyl-carrier-protein]:glycerol-3-phosphate acyltransferase from greening squash cotyledons. Plant Cell Physiol 28: 1071–1079

    CAS  Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H and Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thal-iana. Plant Mol Biol 21: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI and Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI and Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757: 742–749

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y and Murata N (2005) The two-step mechanism of photodamage to photosystem II: step one occurs at the oxygen-evolving complex and step two occurs at the photochemical reaction center. Biochemistry 44: 8494–8499

    Article  PubMed  CAS  Google Scholar 

  • Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD and Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44: 447–450

    Article  PubMed  CAS  Google Scholar 

  • Panpoom S, Los DA and Murata N (1998) Biochemical characterization of a Δ12 acyl-lipid desaturase after over-expression of the enzyme in Escherichia coli. Biochim Biophys Acta 1390: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Popova AV, Velitchkova M and Zanev Y (2007) Effect of membrane fluidity on photosynthetic oxygen production reactions. Z Naturforsch [C] 62: 253–260

    CAS  Google Scholar 

  • Reddy AS, Nuccio ML, Gross LM and Thomas TL (1993) Isolation of a Δ6-desaturase gene from the cyanobacte-rium Synechocystis sp. strain PCC 6803 by gain-of-func-tion expression in Anabaena sp. strain PCC 7120. Plant Mol Biol 22: 293–300

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Sulpice R, Hou C-X, Kinoshita M, Higashi S, Kanaseki T, Nonaka H, Moon BY and Murata N (2003) Genetic modification of fatty acid unsaturation of phos-phatidylglycerol in chloroplasts alters the sensitivity of tobacco plants to cold stress. Plant Cell Environ 27: 99–105

    Article  Google Scholar 

  • Sakamoto T, Los DA, Higashi S, Wada H, Nishida I, Ohmori M and Murata N (1994) Cloning of μ3 desaturase from cyanobacteria and its use in altering the degree of mem-brane-lipid unsaturation. Plant Mol Biol 26: 249–263

    Article  PubMed  CAS  Google Scholar 

  • Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL and Napier JA (2006) A bifunctional Î’12,Î’15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsatu-rated fatty acids. J Biol Chem 281: 36533–36541

    Article  PubMed  CAS  Google Scholar 

  • Sippola K, Kanervo E, Murata N and Aro EM (1998) A genetically engineered increase in fatty acid unsaturation in Synechococcus sp. PCC 7942 allows exchange of D1 protein forms and sustenance of photosystem II activity at low temperature. Eur J Biochem 251: 641–648

    Article  PubMed  CAS  Google Scholar 

  • Sui N, Li M, Zhao S-J, Li F, Liang H and Meng Q-W (2007a) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226: 1097–1108

    Article  CAS  Google Scholar 

  • Sui N, Li M, Shu D-F, Zhao S-J and Meng Q-W (2007b) Antisense-mediated depletion of tomato chloroplast glyc-erol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. Physiol Plant 130: 301–314

    Article  CAS  Google Scholar 

  • Szalontai B, Nishiyama Y, Gombos Z and Murata N (2000) Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 1509: 409–419

    Article  PubMed  CAS  Google Scholar 

  • Szalontai B, Kota Z, Nonaka H and Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR Study. Biochemistry 42: 4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S and Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Tang G-Q, Novitzky WP, Griffin HC, Huber SC and Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44: 433–446

    Article  PubMed  CAS  Google Scholar 

  • Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K and Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15: 6416–6425

    PubMed  CAS  Google Scholar 

  • Tiku PE, Gracey AY, Macartney AI, Beynon RJ and Cossins AR (1996) Cold-induced expression of Î’9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271: 815–818

    Article  PubMed  CAS  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage to the oxygen-evolving manganese cluster. Coord Chem Rev 252: 361–376

    Article  Google Scholar 

  • Vijayan P and Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol 129: 876–885

    Article  PubMed  CAS  Google Scholar 

  • Wada H and Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium Syn-echocystis PCC 6803. Plant Physiol 92: 1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z and Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z and Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91: 4273–4277

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG and Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41: 254–278

    Article  PubMed  CAS  Google Scholar 

  • Wu J and Browse J (1995) Elevated levels of high-melting-point phosphatidylglycerols do not induce chilling sensitivity in an Arabidopsis mutant. Plant Cell 1: 17–27

    Google Scholar 

  • Wu J, Lightner J, Warwick N and Browse J (1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2°C. Plant Physiol 113: 347–56

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Higashi S, Kishitani S, Murata N and Toriyama K (1998) Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breed 4: 269–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Cooperative Research Program on the Stress Tolerance of Plants of the National Institute for Basic Biology to Norio Murata, and by grants from the Russian Foundation for Basic Research and the Molecular and Cell Biology Program of the Russian Academy of Sciences (to Suleyman I. Allakhverdiev and Dmitry A. Los).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman I. Allakhverdiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Allakhverdiev, S.I., Los, D.A., Murata, N. (2009). Regulatory Roles in Photosynthesis of Unsaturated Fatty Acids in Membrane Lipids. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_17

Download citation

Publish with us

Policies and ethics