Skip to main content

Morphological Variations of Starch Grains

  • Chapter
Starch

Abstract

Starch is synthesized in plant storage organs and forms transparent grains inside cells, which are referred to as starch granules or starch grains (SGs). SGs exhibit different morphologies and sizes depending on the species and are prominent in Poaceae endosperm. Comprehensive observations indicate that SG morphologies can be classified into four types: compound grains, bimodal simple grains, uniform simple grains, and a mixed configuration containing compound and simple grains in the same cells. Phylogenetic evaluation of SG morphological diversity indicates that the compound grain type is the ancestral SG morphology in Poaceae, and the bimodal simple grain type is only observed in specific phylogenetic groups that include barley and wheat. Starch morphology and size are important characteristics for industrial applications. However, the molecular mechanisms that determine SG morphology and size are not completely understood. This review summarizes starch grain morphological characteristics and phylogenetic information about SG morphological diversity. It also discusses methods for cytological observation of SGs and recently identified genes that control SG size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arimura S, Fujimoto M, Doniwa Y et al (2008) Arabidopsis ELONGATED MITOCHONDRIA1 is required for localization of DYNAMIN-RELATED PROTEIN3A to mitochondrial fission sites. Plant Cell 20:1555–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  PubMed  Google Scholar 

  • Czaja AT (1978) Structure of starch grains and the classification of vascular plant families. Taxon 27:463–470

    Article  Google Scholar 

  • D’Hulst C, Merida A (2010) The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. New Phytol 188:13–21

    Article  PubMed  Google Scholar 

  • de Pater S, Caspers M, Kottenhagen M et al (2006) Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotechnol J 4:123–134

    Article  PubMed  Google Scholar 

  • Du Q, Faber V, Gunzburger M (1999) Centroidal voronoi tessellations: applications and algorithms. SIAM Rev 41:637–676

    Article  Google Scholar 

  • Dvonch W, Kramer HH, Whistler RL (1951) Polysaccharides of high-amylose corn. Cereal Chem 28:270–280

    CAS  Google Scholar 

  • Fasahat P, Rahman S, Ratnam W (2014) Genetic controls on starch amylose content in wheat and rice grains. J Genet 93:279–292

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Kondo T et al (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Toyosawa Y, Utsumi Y et al (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457

    Article  Google Scholar 

  • Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Article  Google Scholar 

  • Gutiérrez OA, Campbell MR, Glover DV (2002) Starch particle volume in single- and double-mutant maize endosperm genotypes involving the soft starch (h) gene. Crop Sci 42:355–359

    Article  Google Scholar 

  • Hancock RD, Tarbet BJ (2000) The other double helix – the fascinating chemistry of starch. J Chem Educ 77:988–992

    Article  CAS  Google Scholar 

  • Harz CO (1880) Beiträge zur systematik der Gramineen. Linnaea 43:1–30

    Google Scholar 

  • Howard T, Rejab NA, Griffiths S et al (2011) Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot 62:2217–2228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Jane J-L, Kasemsuwan T, Leas S et al (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46:121–129

    Article  CAS  Google Scholar 

  • Jarvi AJ, Eslick RF (1975) Shrunken endosperm mutants in barley. Crop Sci 15:363–366

    Article  Google Scholar 

  • Kang HG, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Akdogan G, Nakaya M et al (2010) Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem 58:4463–4469

    Article  CAS  PubMed  Google Scholar 

  • Li J-H, Guiltinan MJ, Thompson DB (2007) Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules. Carbohydr Res 342:2619–2627

    Article  CAS  PubMed  Google Scholar 

  • Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch-Starke 56:89–99

    Article  CAS  Google Scholar 

  • Malinski E, Daniel JR, Zhang XX, Whistler RL (2003) Isolation of small starch granules and determination of their fat mimic characteristics. Cereal Chem 80:1–4

    Article  CAS  Google Scholar 

  • Mano S, Nakamori C, Kondo M et al (2004) An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division. Plant J 38:487–498

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Miwa T, Nishikawa S et al (2009) Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics. Plant Cell Physiol 50:2000–2014

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Fukao Y, Nishimura M, Hara-Nishimura I (2004) NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. Plant Cell 16:1536–1549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsushima R, Maekawa M, Fujita N, Sakamoto W (2010) A rapid, direct observation method to isolate mutants with defects in starch grain morphology in rice. Plant Cell Physiol 51:728–741

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Yamashita J, Kariyama S et al (2013) A phylogenetic re-evaluation of morphological variations of starch grains among Poaceae species. J Appl Glycosci 60:37–44

    Article  Google Scholar 

  • Matsushima R, Maekawa M, Kusano M et al (2014) Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. Plant Physiol 164:623–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyagishima SY (2011) Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol 155:1533–1544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43:718–725

    Article  CAS  PubMed  Google Scholar 

  • Nakano RT, Matsushima R, Nagano AJ et al (2012) ERMO3/MVP1/GOLD36 is involved in a cell type-specific mechanism for maintaining ER morphology in Arabidopsis thaliana. PLoS ONE 7:e49103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of voronoi diagrams, 2nd edn. John Wiley & Sons, New York

    Book  Google Scholar 

  • Pau G, Oles A, Smith M et al (2014) EBImage: image processing toolbox for R. R package version 4.4.0. http://www.bioconductor.org/packages/release/bioc/html/EBImage.html

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke 62:389–420

    Article  Google Scholar 

  • Poupon A (2004) Voronoi and voronoi-related tessellations in studies of protein structure and interaction. Curr Opin Struct Biol 14:233–241

    Article  CAS  PubMed  Google Scholar 

  • Roldán I, Wattebled F, Lucas MM et al (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Article  PubMed  Google Scholar 

  • Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arab Book/Am Soc Plant Biol 6:e0110

    Google Scholar 

  • Satoh H, Omura T (1981) New endosperm mutations induced by chemical mutagenesis in rice, Oryza sativa L. Japan J Breed 31:316–326

    Article  CAS  Google Scholar 

  • Satoh H, Nishi A, Fujita N et al (2003a) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50:225–230

    Article  CAS  Google Scholar 

  • Satoh H, Nishi A, Yamashita K et al (2003b) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T et al (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shapter FM, Henry RJ, Lee LS (2008) Endosperm and starch granule morphology in wild cereal relatives. Plant Genet Resour 6:85–97

    Article  Google Scholar 

  • Szydlowski N, Ragel P, Raynaud S et al (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Shimada T, Kondo M et al (2005) KATAMARI1/MURUS3 Is a novel golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17:1764–1776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tateoka T (1954) On the systematic significance of starch grains of seeds in Poaceae. J Japn Bot 29:341–347

    Google Scholar 

  • Tateoka T (1955) Further studies on starch grains of seeds in Poaceae from the view point of systematics. J Japn Bot 30:199–208

    Google Scholar 

  • Tateoka T (1962) Starch grains of endosperm in grass systematics. Bot Mag Tokyo 75:377–383

    Article  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • TerBush AD, Yoshida Y, Osteryoung KW (2013) FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 25:461–470

    Article  CAS  PubMed  Google Scholar 

  • Turner R (2014) deldir: Delaunay triangulation and Dirichlet (Voronoi) Tessellation. R package version 0.1-5. http://cran.r-project.org/web/packages/deldir/index.html

  • Urbanek S (2013) png: read and write PNG images. R package version 0.1-7. http://cran.r-project.org/web/packages/png/index.html

  • Walker JT, Merritt NR (1969) Genetic control of abnormal starch granules and high amylose content in a mutant of Glacier barley. Nature 221:482–483

    Article  Google Scholar 

  • Yano M, Isono Y, Satoh H, Omura T (1984) Genetic analysis of sugary and shrunken mutants of rice, Oryza sativa L. Japan J Breed 34:43–49

    Article  Google Scholar 

  • Yano M, Okuno K, Kawakami J et al (1985) High amylose mutants of rice, Oryza sativa L. Theor Appl Genet 69:253–257

    Article  CAS  PubMed  Google Scholar 

  • Yun MS, Kawagoe Y (2009) Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice. Plant Cell Physiol 50:1617–1626

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Matsushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsushima, R. (2015). Morphological Variations of Starch Grains. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_13

Download citation

Publish with us

Policies and ethics