Skip to main content

Open-Cage Fullerene Derivatives: Synthesis, Reactions, and Encapsulation of a Small Molecule

  • Chapter
Chemical Science of π-Electron Systems
  • 1890 Accesses

Abstract

The synthetic methods to create a large opening on the fullerene C60 cage are developed. A water molecule was encapsulated into the open-cage C60 derivative, and the opening was completely restored to afford H2O@C60 in a macroscopic scale under the mild reaction conditions. To realize an encapsulation of a large molecule, efficient way to create a larger opening is found by the reaction with nucleophilic oxidants, which was also applied to a precursor of azafullerenes, in which one of the carbon atoms in fullerene cages is replaced with a nitrogen atom. As another method to enlarge the opening, a sulfur atom was introduced on the rim of the openings. When this reaction was applied to an open-cage C60 derivative, a new open-cage C59S derivative was obtained in addition to the expected compound having a larger opening. Furthermore, when this reaction was applied to an open-cage C70 derivative, another new reaction was found to afford an open-cage C69S derivative. In this chapter, synthetic methods are described for these new carbon-cage molecular systems, including endohedral fullerenes, open-cage fullerenes encapsulating a molecule, and open-cage heterofullerene derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vougioukalakis GC, Roubelakis MM, Orfanopoulos M (2010) Chem Soc Rev 39:817

    Article  CAS  Google Scholar 

  2. Vostrowsky O, Hirsch A (2006) Chem Rev 106:5191

    Article  CAS  Google Scholar 

  3. Akasaka T, Nagase S (eds) (2002) Endofullerenes: a new family of carbon clusters. Kluwer, Dordrecht

    Google Scholar 

  4. Rubin Y (1997) Chem Eur J 3:1009

    Article  CAS  Google Scholar 

  5. Murata M, Murata Y, Komatsu K (2008). Chem Commun 6083

    Google Scholar 

  6. Murata M, Murata Y, Komatsu K (2013) In: Torres T, Bottari G (eds) Organic nanomaterials: synthesis characterization, and device applications, vol 11. Wiley, West Sussex, pp 225–239

    Chapter  Google Scholar 

  7. Komatsu K, Murata M, Murata Y (2005) Science 307:238

    Article  CAS  Google Scholar 

  8. Murata M, Maeda S, Morinaka Y, Murata Y, Komatsu K (2008) J Am Chem Soc 130:15800

    Article  CAS  Google Scholar 

  9. Iwamatsu S-I, Uozaki T, Kobayashi K, Re S, Nagase S, Murata S (2004) J Am Chem Soc 126:2668

    Article  CAS  Google Scholar 

  10. Xiao Z, Yao J, Yang D, Wang F, Huang S, Gan L, Jia Z, Jiang Z, Yang X, Zheng B, Yuan G, Zhang S, Wang Z (2007) J Am Chem Soc 129:16149

    Article  CAS  Google Scholar 

  11. Zhang Q, Jia Z, Liu S, Zhang G, Xiao Z, Yang D, Gan L, Wang Z, Li Y (2009) Org Lett 11:2772

    Article  CAS  Google Scholar 

  12. Zhang Q, Pankewitz T, Liu S, Klopper W, Gan L (2010) Angew Chem Int Ed 49:9935

    Article  CAS  Google Scholar 

  13. Liu S, Zhang Q, Yu Y, Gan L (2012) Org Lett 14:4002

    Article  CAS  Google Scholar 

  14. Iwamatsu S-I, Stanisky CM, Cross RJ, Saunders M, Mizorogi N, Nagase S, Murata S (2006) Angew Chem Int Ed 45:5337

    Article  CAS  Google Scholar 

  15. Stanisky CM, Cross RJ, Saunders M (2009) J Am Chem Soc 131:3392

    Article  CAS  Google Scholar 

  16. Whitener KE Jr, Frunzi M, Iwamatsu S-I, Murata S, Cross RJ, Saunders M (2008) J Am Chem Soc 130:13996

    Article  CAS  Google Scholar 

  17. Whitener KE Jr, Cross RJ, Saunders M, Iwamatsu S-I, Murata S, Mizorogi N, Nagase S (2009) J Am Chem Soc 131:6338

    Article  CAS  Google Scholar 

  18. Shi LJ, Yang DZ, Colombo F, Yu YM, Zhang WX, Gan LB (2013) Chem Eur J 19:16545

    Article  CAS  Google Scholar 

  19. Kurotobi K, Murata Y (2011) Science 333:613

    Article  CAS  Google Scholar 

  20. Murata Y, Murata M, Komatsu K (2003) Chem Eur J 9:1600

    Article  CAS  Google Scholar 

  21. Murata M, Morinaka Y, Kurotobi K, Komatsu K, Murata Y (2010) Chem Lett 39:298

    Article  CAS  Google Scholar 

  22. Andres CJ, Spetseris N, Norton JR, Meyers AI (1995) Tetrahedron Lett 36:1613

    Article  Google Scholar 

  23. Donohoe TJ, Raoof A, Linney ID, Helliwell M (2001) Org Lett 3:861

    Article  CAS  Google Scholar 

  24. Futagoishi T, Murata M, Wakamiya A, Sasamori T, Murata Y (2013) Org Lett 15:2750

    Article  CAS  Google Scholar 

  25. Borowitz IJ, Anschel M, Readio PD (1971) J Org Chem 36:553

    Article  CAS  Google Scholar 

  26. Hashikawa Y, Murata M, Wakamiya A, Murata Y (2014) Org Lett 16:2970

    Article  CAS  Google Scholar 

  27. Hummelen JC, Prato M, Wudl F (1995) J Am Chem Soc 117:7003

    Article  CAS  Google Scholar 

  28. Hummelen JC, Knight B, Pavlovich J, González R, Wudl F (1995) Science 269:1554

    Article  CAS  Google Scholar 

  29. Keshavarz-K M, González R, Hicks RG, Srdanov G, Srdanov VI, Collins TG, Hummelen JC, Bellavia-Lund C, Pavlovich J, Wudl F, Holczer K (1996) Nature 383:147

    Article  CAS  Google Scholar 

  30. Nuber B, Hirsch A (1996). Chem Commun 1421

    Google Scholar 

  31. Iwamatsu S-I, Ono F, Murata S (2003) Chem Lett 32:614

    Article  CAS  Google Scholar 

  32. Iwamatsu S-I, Murata S (2004) Tetrahedron Lett 45:6391

    Article  CAS  Google Scholar 

  33. Vougioukalakis GC, Prassides K, Orfanopoulos M (2004) Org Lett 6:1245

    Article  CAS  Google Scholar 

  34. Roubelakis MM, Vougioukalakis GC, Orfanopoulos M (2007) J Org Chem 72:6526

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  36. Chuang S-C, Murata Y, Murata M, Mori S, Maeda S, Tanabe F, Komatsu K (2007). Chem Commun 1278

    Google Scholar 

  37. Murata Y, Maeda S, Murata M, Komatsu K (2008) J Am Chem Soc 130:6702

    Article  CAS  Google Scholar 

  38. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  39. Frunzi M, Baldwin AM, Shibata N, Iwamatsu S-I, Lawler RG, Turro NJ (2011) J Phys Chem A 115:735

    Article  CAS  Google Scholar 

  40. Zhang R, Futagoishi T, Murata M, Wakamiya A, Murata Y (2014) J Am Chem Soc 136:8193

    Article  CAS  Google Scholar 

  41. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. WILEY-VCH, Weinheim

    Google Scholar 

  42. Herrmann A, Diederich F, Thilgen C (1994) Helv Chim Acta 77:1689

    Article  Google Scholar 

  43. Birkett PR, Avent AG, Darwish AD, Kroto HW, Taylor R, Walton DRM (1994). J Chem Soc Chem Commun 1869

    Google Scholar 

  44. Hasharoni K, Bellavia-Lund C, Keshavarz-K M, Srdanov G, Wudl F (1997) J Am Chem Soc 119:11128

    Article  CAS  Google Scholar 

  45. Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K, Huffman DR, Krätschmer W, Rubin Y, Schriver KE, Sensharma D, Whetten RL (1990) J Phys Chem 94:8630

    Article  CAS  Google Scholar 

  46. Guldi DM, Kamat PV (2000) Fullerenes: chemistry, physics, and technology. Wiley-Interscience, New York, p 225

    Google Scholar 

  47. Li G, Zhu R, Yang Y (2012) Nat Photonics 6:153

    Article  CAS  Google Scholar 

  48. Morinaka Y, Tanabe F, Murata M, Murata Y, Komatsu K (2010) Chem Commun 46:4532

    Article  CAS  Google Scholar 

  49. Mukaiyama S, Inanaga J, Yamaguchi M (1981) Bull Chem Soc Jpn 54:2221

    Article  CAS  Google Scholar 

  50. Tajima Y, Takeuchi K (2002) J Org Chem 67:1696

    Article  CAS  Google Scholar 

  51. Beduz C, Carravetta M, Chen JY-C, Concistre M, Denning M, Frunzi M, Horsewill AJ, Johannessen OG, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Room T, Sarker R, Turro NJ, Yang Y (2012) Proc Natl Acad Sci U S A 109:12894

    Article  CAS  Google Scholar 

  52. Goh K, Jimenez-Ruiz M, Johnson MR, Roles S, Ollivier J, Denning MS, Mamone S, Levitt ML, Lei X, Li Y, Turro NJ, Murata Y, Horsewill AJ (2014) Phys Chem Chem Phys 16:21330

    Article  CAS  Google Scholar 

  53. Zhang R, Murata M, Wakamiya A, Murata Y (2013) Chem Lett 42:879

    Article  CAS  Google Scholar 

  54. Aoyagi S, Hoshino N, Akutagawa T, Sado Y, Kitaura R, Shinohara H, Sugimoto K, Zhang R, Murata Y (2014) Chem Commun 50:524

    Article  CAS  Google Scholar 

  55. Hitosugi S, Iizuka R, Yamasaki T, Zhang R, Murata Y, Isobe H (2013) Org Lett 15:3199

    Article  CAS  Google Scholar 

  56. Krachmalnicoff A, Levitt MH, Whitby RJ (2014) Chem Commun 50:13037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasujiro Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Murata, Y. (2015). Open-Cage Fullerene Derivatives: Synthesis, Reactions, and Encapsulation of a Small Molecule. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_8

Download citation

Publish with us

Policies and ethics