Skip to main content

The Role of the Transcription Factor Pax6 in Brain Development and Evolution: Evidence and Hypothesis

  • Chapter
  • First Online:
Book cover Cortical Development

Abstract

During mammalian corticogenesis, the dorsal telencephalon is patterned through secreted molecules and transcription factors. Expression of the transcription factor Pax6 demarcates the dorsal telencephalon, thereby patterning the future cortical primordium. Pax6 is also crucial in neurogenesis in the developing cortex through its role in balancing proliferation and differentiation of neural progenitor cells (NPCs). In this chapter, we address the role of Pax6 and its downstream molecules in cortical development and evolution. We also note the possible involvement of Pax6 in the onset of neurodevelopmental diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355. doi:10.1038/nrg2346

    PubMed  CAS  Google Scholar 

  • Agca C, Elhajj MC, Klein WH, Venuti JM (2011) Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J Comp Neurol 519(17):3566–3579. doi:10.1002/cne.22724

    PubMed  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31(3):137–145. doi:10.1016/j.tins.2007.12.005

    PubMed  CAS  Google Scholar 

  • Andrews GL, Mastick GS (2003) R-cadherin is a Pax6-regulated, growth-promoting cue for pioneer axons. J Neurosci 23(30):9873–9880

    PubMed  CAS  Google Scholar 

  • Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25(42):9752–9761. doi:10.1523/JNEUROSCI.2512-05.2005

    PubMed  CAS  Google Scholar 

  • Asami M, Pilz GA, Ninkovic J, Godinho L, Schroeder T, Huttner WB, Gotz M (2011) The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development 138(23):5067–5078. doi:10.1242/dev.074591

    PubMed  CAS  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262(5133):563–566

    PubMed  CAS  Google Scholar 

  • Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6(5):376–387. doi:10.1038/nrn1667

    PubMed  CAS  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201–214. doi:10.1016/j.neuron.2008.10.004

    PubMed  CAS  Google Scholar 

  • Bender CM, Gonzalgo ML, Gonzales FA, Nguyen CT, Robertson KD, Jones PA (1999) Roles of cell division and gene transcription in the methylation of CpG islands. Mol Cell Biol 19(10):6690–6698

    PubMed  CAS  Google Scholar 

  • Bentley CA, Zidehsarai MP, Grindley JC, Parlow AF, Barth-Hall S, Roberts VJ (1999) Pax6 is implicated in murine pituitary endocrine function. Endocrine 10(2):171–177. doi:10.1385/ENDO:10:2:171

    PubMed  CAS  Google Scholar 

  • Bhakar AL, Dolen G, Bear MF (2012) The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 35:417–443. doi:10.1146/annurev-neuro-060909-153138

    PubMed  CAS  Google Scholar 

  • Bishop KM, Rubenstein JL, O’Leary DD (2002) Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22(17):7627–7638

    PubMed  CAS  Google Scholar 

  • Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Gotz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA 102(50):18183–18188. doi:10.1073/pnas.0506535102

    PubMed  CAS  Google Scholar 

  • Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101(41):14966–14971. doi:10.1073/pnas.0406283101

    PubMed  CAS  Google Scholar 

  • Costa MR, Kessaris N, Richardson WD, Gotz M, Hedin-Pereira C (2007) The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci 27(42):11376–11388. doi:10.1523/JNEUROSCI.2418-07.2007

    PubMed  CAS  Google Scholar 

  • Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V (2011) Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res 21(8):1349–1359. doi:10.1101/gr.124115.111

    PubMed  CAS  Google Scholar 

  • Cross SH, Clark VH, Bird AP (1999) Isolation of CpG islands from large genomic clones. Nucleic Acids Res 27(10):2099–2107

    PubMed  CAS  Google Scholar 

  • Czerny T, Busslinger M (1995) DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol 15(5):2858–2871

    PubMed  CAS  Google Scholar 

  • Davis LK, Meyer KJ, Rudd DS, Librant AL, Epping EA, Sheffield VC, Wassink TH (2008) Pax6 3' deletion results in aniridia, autism and mental retardation. Hum Genet 123(4):371–378. doi:10.1007/s00439-008-0484-x

    PubMed  CAS  Google Scholar 

  • Dimanlig PV, Faber SC, Auerbach W, Makarenkova HP, Lang RA (2001) The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128(22):4415–4424

    PubMed  CAS  Google Scholar 

  • Duparc RH, Boutemmine D, Champagne MP, Tetreault N, Bernier G (2006) Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. Dev Biol 300(2):647–655. doi:10.1016/j.ydbio.2006.07.045

    PubMed  CAS  Google Scholar 

  • Duvall JA, Lu A, Cantor RM, Todd RD, Constantino JN, Geschwind DH (2007) A quantitative trait locus analysis of social responsiveness in multiplex autism families. Am J Psychiatry 164(4):656–662. doi:10.1176/appi.ajp.164.4.656

    PubMed  Google Scholar 

  • Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25(1):247–251. doi:10.1523/JNEUROSCI.2899-04.2005

    PubMed  CAS  Google Scholar 

  • Erclik T, Hartenstein V, McInnes RR, Lipshitz HD (2009) Eye evolution at high resolution: the neuron as a unit of homology. Dev Biol 332(1):70–79. doi:10.1016/j.ydbio.2009.05.565

    PubMed  CAS  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90(1):169–180

    PubMed  CAS  Google Scholar 

  • Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129(2):455–466

    PubMed  CAS  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13(6):690–699. doi:10.1038/nn.2553

    PubMed  CAS  Google Scholar 

  • Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N, Schroder R, Lakshmanaperumal N, Henry I, Vogt J, Riehn A, Distler W, Nitsch R, Enard W, Paabo S, Huttner WB (2012) Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci USA 109(29):11836–11841. doi:10.1073/pnas.1209647109

    PubMed  CAS  Google Scholar 

  • Fish JL, Dehay C, Kennedy H, Huttner WB (2008) Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 121(Pt 17):2783–2793. doi:10.1242/jcs.023465

    PubMed  CAS  Google Scholar 

  • Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends genet 25(4):166–177. doi:10.1016/j.tig.2009.03.002

    PubMed  CAS  Google Scholar 

  • Fukuda T, Kawano H, Osumi N, Eto K, Kawamura K (2000) Histogenesis of the cerebral cortex in rat fetuses with a mutation in the Pax-6 gene. Brain Res Dev Brain Res 120(1):65–75

    PubMed  CAS  Google Scholar 

  • Fukuzaki U, Osumi N (2007) The search for downstream target genes of Pax6 using microassay analysis. Future medical engineering based on bionanotechnology. Imperial College Press, London

    Google Scholar 

  • Gehring WJ (1996) The master control gene for morphogenesis and evolution of the eye. Genes cells 1(1):11–15

    PubMed  CAS  Google Scholar 

  • Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46(1):65–73

    PubMed  Google Scholar 

  • Gomez-Lopez S, Wiskow O, Favaro R, Nicolis SK, Price DJ, Pollard SM, Smith A (2011) Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia 59(11):1588–1599. doi:10.1002/glia.21201

    PubMed  Google Scholar 

  • Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J (2011) Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in alpha-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 13(Suppl 1):31–38. doi:10.1111/j.1463-1326.2011.01445.x

    PubMed  CAS  Google Scholar 

  • Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21(5):1031–1044. doi:S0896-6273(00)80621-2 [pii]

    PubMed  CAS  Google Scholar 

  • Griveau A, Borello U, Causeret F, Tissir F, Boggetto N, Karaz S, Pierani A (2010) A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLoS Biol 8(7):e1000440. doi:10.1371/journal.pbio.1000440

    PubMed  Google Scholar 

  • Haba H, Nomura T, Suto F, Osumi N (2009) Subtype-specific reduction of olfactory bulb interneurons in Pax6 heterozygous mutant mice. Neurosci Res 65(1):116–121. doi:10.1016/j.neures.2009.05.011

    PubMed  CAS  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872. doi:10.1038/nn1479

    PubMed  CAS  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) New perspectives on eye evolution. Curr Opin Genet Dev 5(5):602–609

    PubMed  CAS  Google Scholar 

  • Halfter W, Dong S, Yip YP, Willem M, Mayer U (2002) A critical function of the pial basement membrane in cortical histogenesis. J Neurosci 22(14):6029–6040. doi:20026580

    PubMed  CAS  Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464(7288):554–561. doi:10.1038/nature08845

    PubMed  CAS  Google Scholar 

  • Hanson I, Van Heyningen V (1995) Pax6: more than meets the eye. Trends genet 11(7):268–272

    PubMed  CAS  Google Scholar 

  • Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Gotz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133(16):3245–3254. doi:10.1242/dev.02486

    PubMed  CAS  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5(4):308–315. doi:10.1038/nn828

    PubMed  CAS  Google Scholar 

  • Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233. doi:10.1016/j.neures.2006.03.004

    PubMed  CAS  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354(6354):522–525. doi:10.1038/354522a0

    PubMed  CAS  Google Scholar 

  • Hirata T, Nomura T, Takagi Y, Sato Y, Tomioka N, Fujisawa H, Osumi N (2002) Mosaic development of the olfactory cortex with Pax6-dependent and -independent components. Brain Res Dev Brain Res 136(1):17–26

    PubMed  CAS  Google Scholar 

  • Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219(2):373–383. doi:10.1006/dbio.2000.9616

    PubMed  CAS  Google Scholar 

  • Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S, Gruss P (1999) Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol 205(1):79–97. doi:10.1006/dbio.1998.9128

    PubMed  CAS  Google Scholar 

  • Kioussi C, O'Connell S, St-Onge L, Treier M, Gleiberman AS, Gruss P, Rosenfeld MG (1999) Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sci USA 96(25):14378–14382

    PubMed  CAS  Google Scholar 

  • Kleinjan DA, Seawright A, Childs AJ, van Heyningen V (2004) Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Dev Biol 265(2):462–477

    PubMed  CAS  Google Scholar 

  • Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G, Seawright A, Hever AM, Yeyati PL, van Heyningen V, Coutinho P (2008) Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 4(2):e29. doi:10.1371/journal.pgen.0040029

    PubMed  Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25(30):6997–7003. doi:10.1523/JNEUROSCI.1435-05.2005

    PubMed  CAS  Google Scholar 

  • Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15(4):430–438. doi:10.1016/j.gde.2005.05.001

    PubMed  CAS  Google Scholar 

  • LaMonica BE, Lui JH, Wang X, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22(5):747–753. doi:10.1016/j.conb.2012.03.006

    PubMed  CAS  Google Scholar 

  • Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR, Tang SC, Coksaygan T, Hall PE, Chigurupati S, Patton B, Colognato H, Rao MS, Mattson MP, Haydar TF, Ffrench-Constant C (2009) beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS biol 7(8):e1000176. doi:10.1371/journal.pbio.1000176

    PubMed  Google Scholar 

  • Lu Q, Paredes M, Medina M, Zhou J, Cavallo R, Peifer M, Orecchio L, Kosik KS (1999) Delta-catenin, an adhesive junction-associated protein which promotes cell scattering. J Cell Biol 144(3):519–532

    PubMed  CAS  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36. doi:10.1016/j.cell.2011.06.030

    PubMed  CAS  Google Scholar 

  • Macdonald R, Xu Q, Barth KA, Mikkola I, Holder N, Fjose A, Krauss S, Wilson SW (1994) Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebra fish forebrain. Neuron 13(5):1039–1053

    PubMed  CAS  Google Scholar 

  • Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes cells 10(10):1001–1014. doi:10.1111/j.1365-2443.2005.00893.x

    PubMed  CAS  Google Scholar 

  • Maekawa M, Iwayama Y, Nakamura K, Sato M, Toyota T, Ohnishi T, Yamada K, Miyachi T, Tsujii M, Hattori E, Maekawa N, Osumi N, Mori N, Yoshikawa T (2009) A novel missense mutation (Leu46Val) of PAX6 found in an autistic patient. Neurosci Lett 462(3):267–271. doi:10.1016/j.neulet.2009.07.021

    PubMed  CAS  Google Scholar 

  • Maekawa M, Fujisawa H, Iwayama Y, Tamase A, Toyota T, Osumi N, Yoshikawa T (2010) Giant subependymoma developed in a patient with aniridia: analyses of PAX6 and tumor-relevant genes. Brain Pathol 20(6):1033–1041. doi:10.1111/j.1750-3639.2010.00406.x

    PubMed  CAS  Google Scholar 

  • Manuel M, Price DJ (2005) Role of Pax6 in forebrain regionalization. Brain Res Bull 66(4–6):387–393. doi:10.1016/j.brainresbull.2005.02.006

    PubMed  CAS  Google Scholar 

  • Markl ID, Cheng J, Liang G, Shibata D, Laird PW, Jones PA (2001) Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time. Cancer Res 61(15):5875–5884

    PubMed  CAS  Google Scholar 

  • Marthiens V, Kazanis I, Moss L, Long K, Ffrench-Constant C (2010) Adhesion molecules in the stem cell niche–more than just staying in shape? J Cell Sci 123(Pt 10):1613–1622. doi:10.1242/jcs.054312

    PubMed  CAS  Google Scholar 

  • Mastick GS, Andrews GL (2001) Pax6 regulates the identity of embryonic diencephalic neurons. Mol Cell Neurosci 17(1):190–207. doi:10.1006/mcne.2000.0924

    PubMed  CAS  Google Scholar 

  • Mastick GS, Davis NM, Andrew GL, Easter SS Jr (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124(10):1985–1997

    PubMed  CAS  Google Scholar 

  • McBride DJ, Buckle A, van Heyningen V, Kleinjan DA (2011) DNaseI hypersensitivity and ultraconservation reveal novel, interdependent long-range enhancers at the complex Pax6 cis-regulatory region. PLoS One 6(12):e28616. doi:10.1371/journal.pone.0028616

    PubMed  CAS  Google Scholar 

  • Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397(1):29–40

    PubMed  CAS  Google Scholar 

  • Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128(18):3521–3531

    PubMed  CAS  Google Scholar 

  • Nacher J, Varea E, Blasco-Ibanez JM, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, McEwen BS (2005) Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J Neurosci Res 81(6):753–761. doi:10.1002/jnr.20596

    PubMed  CAS  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110(4):429–441

    PubMed  CAS  Google Scholar 

  • Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79(7):1209–1220

    PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2007) Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol 64(5):639–642. doi:10.1001/archneur.64.5.639

    PubMed  Google Scholar 

  • Nomura T, Osumi N (2004) Misrouting of mitral cell progenitors in the Pax6/small eye rat telencephalon. Development 131(4):787–796. doi:10.1242/dev.00984

    PubMed  CAS  Google Scholar 

  • Nomura T, Holmberg J, Frisen J, Osumi N (2006) Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5. Development 133(7):1335–1345. doi:10.1242/dev.02290

    PubMed  CAS  Google Scholar 

  • Nural HF, Mastick GS (2004) Pax6 guides a relay of pioneer longitudinal axons in the embryonic mouse forebrain. J Comp Neurol 479(4):399–409. doi:10.1002/cne.20317

    PubMed  CAS  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14(5):899–912

    PubMed  CAS  Google Scholar 

  • O'Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90–100. doi:10.1016/j.conb.2008.05.011

    PubMed  Google Scholar 

  • Osumi N (2001) The role of Pax6 in brain patterning. Tohoku J Exp Med 193(3):163–174

    PubMed  CAS  Google Scholar 

  • Osumi N, Hirota A, Ohuchi H, Nakafuku M, Iimura T, Kuratani S, Fujiwara M, Noji S, Eto K (1997) Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development 124(15):2961–2972

    PubMed  CAS  Google Scholar 

  • Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26(7):1663–1672. doi:10.1634/stemcells.2007-0884

    PubMed  CAS  Google Scholar 

  • Pera EM, Kessel M (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124(20):4153–4162

    PubMed  CAS  Google Scholar 

  • Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12(4):430–434

    PubMed  CAS  Google Scholar 

  • Pinto GR, Clara CA, Santos MJ, Almeida JR, Burbano RR, Rey JA, Casartelli C (2007) Mutation analysis of gene PAX6 in human gliomas. Genet mol res 6(4):1019–1025

    PubMed  CAS  Google Scholar 

  • Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30(1–3):24–32. doi:10.1159/000109848

    PubMed  CAS  Google Scholar 

  • Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ (2007) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 302(1):50–65. doi:10.1016/j.ydbio.2006.08.035

    PubMed  CAS  Google Scholar 

  • Quinn JC, Molinek M, Nowakowski TJ, Mason JO, Price DJ (2010) Novel lines of Pax6−/− embryonic stem cells exhibit reduced neurogenic capacity without loss of viability. BMC neurosci 11:26. doi:10.1186/1471-2202-11-26

    PubMed  Google Scholar 

  • Radakovits R, Barros CS, Belvindrah R, Patton B, Muller U (2009) Regulation of radial glial survival by signals from the meninges. J Neurosci 29(24):7694–7705. doi:10.1523/JNEUROSCI.5537-08.2009

    PubMed  CAS  Google Scholar 

  • Radner S, Banos C, Bachay G, Li YN, Hunter DD, Brunken WJ, Yee KT (2013) Beta2 and gamma3 laminins are critical cortical basement membrane components: ablation of Lamb2 and Lamc3 genes disrupts cortical lamination and produces dysplasia. Dev Neurobiol 73(3):209–229. doi:10.1002/dneu.22057

    PubMed  CAS  Google Scholar 

  • Reillo I, de Juan RC, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21(7):1674–1694. doi:10.1093/cercor/bhq238

    PubMed  Google Scholar 

  • Rubenstein JL (2010) Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 23(2):118–123. doi:10.1097/WCO.0b013e328336eb13

    PubMed  Google Scholar 

  • Saffary R, Xie Z (2011) FMRP regulates the transition from radial glial cells to intermediate progenitor cells during neocortical development. J Neurosci 31(4):1427–1439. doi:10.1523/JNEUROSCI.4854-10.2011

    PubMed  CAS  Google Scholar 

  • Sakayori N, Kikkawa T, Osumi N (2012) Reduced proliferation and excess astrogenesis of Pax6 heterozygous neural stem/progenitor cells. Neurosci Res 74(2):116–121. doi:10.1016/j.neures.2012.08.004

    PubMed  CAS  Google Scholar 

  • Sakurai K, Osumi N (2008) The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 28(18):4604–4612. doi:10.1523/JNEUROSCI.5074-07.2008

    PubMed  CAS  Google Scholar 

  • Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5(6):e1000511. doi:10.1371/journal.pgen.1000511

    PubMed  Google Scholar 

  • Scardigli R, Schuurmans C, Gradwohl G, Guillemot F (2001) Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31(2):203–217. doi:S0896-6273(01)00358-0 [pii]

    PubMed  CAS  Google Scholar 

  • Scardigli R, Baumer N, Gruss P, Guillemot F, Le Roux I (2003) Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130(14):3269–3281

    PubMed  CAS  Google Scholar 

  • Shimoda Y, Tajima Y, Osanai T, Katsume A, Kohara M, Kudo T, Narimatsu H, Takashima N, Ishii Y, Nakamura S, Osumi N, Sanai Y (2002) Pax6 controls the expression of Lewis × epitope in the embryonic forebrain by regulating alpha 1,3-fucosyltransferase IX expression. J Biol Chem 277(3):2033–2039. doi:10.1074/jbc.M108495200

    PubMed  CAS  Google Scholar 

  • Sirko S, Neitz A, Mittmann T, Horvat-Brocker A, von Holst A, Eysel UT, Faissner A (2009) Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain 132(Pt 8):2252–2264. doi:10.1093/brain/awp043

    PubMed  Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14(3 Pt 2):1395–1412

    PubMed  CAS  Google Scholar 

  • Stoykova A, Gotz M, Gruss P, Price J (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124(19):3765–3777

    PubMed  CAS  Google Scholar 

  • Talamillo A, Quinn JC, Collinson JM, Caric D, Price DJ, West JD, Hill RE (2003) Pax6 regulates regional development and neuronal migration in the cerebral cortex. Dev Biol 255(1):151–163

    PubMed  CAS  Google Scholar 

  • Tamai H, Shinohara H, Miyata T, Saito K, Nishizawa Y, Nomura T, Osumi N (2007) Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes cells 12(9):983–996. doi:10.1111/j.1365-2443.2007.01113.x

    PubMed  CAS  Google Scholar 

  • Tamamaki N (2002) Radial glias and radial fibers: what is the function of radial fibers? Anat Sci Int 77(1):2–11. doi:10.1046/j.0022-7722.2002.00013.x

    PubMed  Google Scholar 

  • Tang K, Rubenstein JL, Tsai SY, Tsai MJ (2012) COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development 139(9):1630–1639. doi:10.1242/dev.075564

    PubMed  CAS  Google Scholar 

  • Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M et al (1991) Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67(6):1059–1074

    PubMed  CAS  Google Scholar 

  • Tong Y, Shen J (2009) alpha-synuclein and LRRK2: partners in crime. Neuron 64(6):771–773. doi:10.1016/j.neuron.2009.12.017

    PubMed  CAS  Google Scholar 

  • Tsui D, Vessey JP, Tomita H, Kaplan DR, Miller FD (2013) FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci 33(1):244–258. doi:10.1523/JNEUROSCI.1665-12.2013

    PubMed  CAS  Google Scholar 

  • Tsunekawa Y, Osumi N (2012) How to keep proliferative neural stem/progenitor cells: a critical role of asymmetric inheritance of cyclin D2. Cell Cycle 11(19):3550–3554. doi:10.4161/cc.21500

    PubMed  CAS  Google Scholar 

  • Tsunekawa Y, Britto JM, Takahashi M, Polleux F, Tan SS, Osumi N (2012) Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates. EMBO J 31(8):1879–1892. doi:10.1038/emboj.2012.43

    PubMed  CAS  Google Scholar 

  • Tuoc TC, Stoykova A (2008) Er81 is a downstream target of Pax6 in cortical progenitors. BMC dev biol 8:23. doi:10.1186/1471-213X-8-23

    PubMed  Google Scholar 

  • Umeda T, Takashima N, Nakagawa R, Maekawa M, Ikegami S, Yoshikawa T, Kobayashi K, Okanoya K, Inokuchi K, Osumi N (2010) Evaluation of Pax6 mutant rat as a model for autism. PLoS One 5(12):e15500. doi:10.1371/journal.pone.0015500

    PubMed  CAS  Google Scholar 

  • Vergano-Vera E, Yusta-Boyo MJ, de Castro F, Bernad A, de Pablo F, Vicario-Abejon C (2006) Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development 133(21):4367–4379. doi:10.1242/dev.02601

    PubMed  CAS  Google Scholar 

  • von Holst A, Egbers U, Prochiantz A, Faissner A (2007) Neural stem/progenitor cells express 20 tenascin C isoforms that are differentially regulated by Pax6. J Biol Chem 282(12):9172–9181. doi:10.1074/jbc.M608067200

    Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113(4):1435–1449

    PubMed  CAS  Google Scholar 

  • Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P, Mason JO, Hill RE, Price DJ (1999) The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 9(6):627–635

    PubMed  CAS  Google Scholar 

  • Wei B, Nie Y, Li X, Wang C, Ma T, Huang Z, Tian M, Sun C, Cai Y, You Y, Liu F, Yang Z (2011) Emx1-expressing neural stem cells in the subventricular zone give rise to new interneurons in the ischemic injured striatum. Eur J Neurosci 33(5):819–830. doi:10.1111/j.1460-9568.2010.07570.x

    PubMed  Google Scholar 

  • Weimann JM, Zhang YA, Levin ME, Devine WP, Brulet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24(4):819–831

    PubMed  CAS  Google Scholar 

  • Wen J, Hu Q, Li M, Wang S, Zhang L, Chen Y, Li L (2008) Pax6 directly modulate Sox2 expression in the neural progenitor cells. Neuroreport 19(4):413–417. doi:10.1097/WNR.0b013e3282f64377

    PubMed  CAS  Google Scholar 

  • Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O'Kane CJ, Rubinsztein DC (2010) alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190(6):1023–1037. doi:10.1083/jcb.201003122

    PubMed  CAS  Google Scholar 

  • Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP (2010) CpG island hypermethylation in human astrocytomas. Cancer Res 70(7):2718–2727. doi:10.1158/0008-5472.CAN-09-3631

    PubMed  CAS  Google Scholar 

  • Xie Q, Yang Y, Huang J, Ninkovic J, Walcher T, Wolf L, Vitenzon A, Zheng D, Gotz M, Beebe DC, Zavadil J, Cvekl A (2013) Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 8(1):e54507. doi:10.1371/journal.pone.0054507

    PubMed  CAS  Google Scholar 

  • Xu S, Han JC, Morales A, Menzie CM, Williams K, Fan YS (2008) Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res 122(2):181–187. doi:10.1159/000172086

    PubMed  CAS  Google Scholar 

  • Zhang X, Heaney S, Maas RL (2003) Cre-loxp fate-mapping of Pax6 enhancer active retinal and pancreatic progenitors. Genesis 35(1):22–30. doi:10.1002/gene.10160

    PubMed  CAS  Google Scholar 

  • Zhang C, Wu H, Zhu X, Wang Y, Guo J (2011) Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci 22(4):457–465. doi:10.1515/RNS.2011.034

    PubMed  CAS  Google Scholar 

  • Zhou YH, Tan F, Hess KR, Yung WK (2003) The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin cancer res 9(9):3369–3375

    PubMed  CAS  Google Scholar 

  • Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ, Wathen K, Hess KR, Gumin J, Lang F, Yung WK (2005) PAX6 suppresses growth of human glioblastoma cells. J Neurooncol 71(3):223–229. doi:10.1007/s11060-004-1720-4

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yuji Tsunekawa and Mr. Nobuyuki Sakayori for kindly providing their immunohistochemical data. This work was supported by a grant-in-aid for Scientific Research on Priority Areas “Molecular Brain Science” and “Corticogenesis” (to N. O.) from MEXT Japan. T.K. was supported by a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Osumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Osumi, N., Kikkawa, T. (2013). The Role of the Transcription Factor Pax6 in Brain Development and Evolution: Evidence and Hypothesis. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_3

Download citation

Publish with us

Policies and ethics