Skip to main content

Spectral Asymptotics of Percolation Hamiltonians on Amenable Cayley Graphs

  • Conference paper
Methods of Spectral Analysis in Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 186))

Abstract

In this paper we study spectral properties of adjacency and Laplace operators on percolation subgraphs of Cayley graphs of amenable, finitely generated groups. In particular we describe the asymptotic behaviour of the integrated density of states (spectral distribution function) of these random Hamiltonians near the spectral minimum.

The first part of the note discusses various aspects of the quantum percolation model, subsequently we formulate a series of new results, and finally we outline the strategy used to prove our main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Adachi. A note on the Følner condition for amenability. Nagoya Math. J., 131:67–74, 1993.

    MATH  MathSciNet  Google Scholar 

  2. M. Aizenman and D.J. Barsky. Sharpness of the phase transition in percolation models. Comm. Math. Phys., 108(3):489–526, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Aizenman, A. Elgart, S. Naboko, J.H. Schenker, and G. Stolz. Moment analysis for localization in random Schrödinger operators. Invent. Math., 163(2):343–413, 2006. http://www.ma.utexas.edu/mp_arc/03-377.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Aizenman and C.M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys., 36(1–2):107–143, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Aizenman, J.H. Schenker, R.M. Friedrich, and D. Hundertmark. Finitevolume fractional-moment criteria for Anderson localization. Comm. Math. Phys., 224(1):219–253, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492, 1958.

    Article  Google Scholar 

  7. P. Antal. Enlargement of obstacles for the simple random walk. Ann. Probab., 23(3):1061–1101, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Antunović and I. Veselić. Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs. J. Statist. Phys. 130(5):983–1009, http://www.arxiv.org/abs/0707.1089.

    Google Scholar 

  9. T. Antunović and I. Veselić. Equality of Lifshitz and van Hove exponents on amenable Cayley graphs. http://www.arxiv.org/abs/0706.2844.

    Google Scholar 

  10. L. Bartholdi, S. Cantat, T. Ceccherini-Silberstein, and P. de la Harpe. Estimates for simple random walks on fundamental groups of surfaces. Colloq. Math., 72(1):173–193, 1997.

    MATH  MathSciNet  Google Scholar 

  11. L. Bartholdi and W. Woess. Spectral computations on lamplighter groups and Diestel-Leader graphs. J. Fourier Anal. Appl., 11(2):175–202, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Bass. The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc., 25:603–614, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Group-invariant percolation on graphs. Geom. Funct. Anal., 9(1):29–66, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Benjamini and O. Schramm. Percolation beyond Z d, many questions and a few answers. Electron. Comm. Probab., 1(8):71–82, 1996. revised 1999 version: http://research.microsoft.com/~schramm/pyondrep/.

    MATH  MathSciNet  Google Scholar 

  15. M.S. Birman and M. Solomyak. On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential. J. Anal. Math., 83:337–391, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Biskup and W. König. Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab., 29(2):636–682, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Carmona and J. Lacroix. Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  18. J.T. Chayes, L. Chayes, J.R. Franz, J.P. Sethna, and S.A. Trugman. On the density of states for the quantum percolation problem. J. Phys. A, 19(18):L1173–L1177, 1986.

    Article  MathSciNet  Google Scholar 

  19. F. Chung, A. Grigoryan, and S.-T. Yau. Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Comm. Anal. Geom., 8(5):969–1026, 2000.

    MATH  MathSciNet  Google Scholar 

  20. F.R.K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC, 1997.

    Google Scholar 

  21. Y. Colin de Verdière. Spectres de graphes, volume 4 of Cours Spécialisés. Société Mathématique de France, Paris, 1998.

    MATH  Google Scholar 

  22. T. Coulhon and L. Saloff-Coste. Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana, 9(2):293–314, 1993.

    MATH  MathSciNet  Google Scholar 

  23. C. Coulson and G. Rushbrooke. Note on the method of molecular orbitals. Proc. Cambridge Philos. Soc., 36:193–200, 1940.

    Article  Google Scholar 

  24. W. Craig and B. Simon. Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices Commun. Math. Phys., 90:207–218, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  25. E.B. Davies and M. Plum. Spectral pollution. IMA J. Numer., Anal., 24(3):417–438, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  26. P.-G. de Gennes, P. Lafore, and J. Millot. Amas accidentels dans les solutions solides désordonnées. J. of Phys. and Chem. of Solids, 11(1–2):105–110, 1959.

    Google Scholar 

  27. P.-G. de Gennes, P. Lafore, and J. Millot. Sur un phénomène de propagation dans un milieu désordonné. J. Phys. Rad., 20:624, 1959.

    Article  Google Scholar 

  28. F. Delyon and B. Souillard. Remark on the continuity of the density of states of ergodic finite-difference operators. Commun. Math. Phys., 94:289–291, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Dicks and T. Schick. The spectral measure of certain elements of the complex group ring of a wreath product. Geom. Dedicata, 93:121–134, 2002. www.arxiv.org/math/0107145.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Dodziuk. de Rham-Hodge theory for L 2-cohomology of infinite coverings. Topology, 16(2):157–165, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Dodziuk, N. Lenz, D. Peyerimhoff, T. Schick, and I. Veselić, editors. L 2-Spectral Invariants and the Integrated Density of States, volume 3 of Oberwolfach Rep., 2006. http://www.mfo.de/programme/schedule/2006/08b/OWR_2006_09.pdf.

    Google Scholar 

  32. J. Dodziuk, P. Linnell, V. Mathai, T. Schick, and S. Yates. Approximating L 2-invariants, and the Atiyah conjecture. Comm. Pure Appl. Math., 56(7):839–873, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Dodziuk and V. Mathai. Approximating L 2 invariants of amenable covering spaces: a combinatorial approach. J. Funct. Anal., 154(2):359–378, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Donnelly. On L 2-Betti numbers for abelian groups. Canad. Math. Bull., 24(1):91–95, 1981.

    MATH  MathSciNet  Google Scholar 

  35. M.D. Donsker and S.R.S. Varadhan. Asymptotics for the Wiener sausage. Commun. Pure Appl. Math., 28:525–565, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  36. M.D. Donsker and S.R.S. Varadhan. On the number of distinct sites visited by a random walk. Comm. Pure Appl. Math., 32(6):721–747, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  37. F. Germinet and A. Klein. Explicit finite volume criteria for localization in continous random media and applications. Geom. Funct. Anal., 13(6):1201–1238, 2003. http://www.ma.utexas.edu/mp_arc/c/02/02-375.ps.gz.

    Article  MATH  MathSciNet  Google Scholar 

  38. F. Germinet and A. Klein. A characterization of the Anderson metal-insulator transport transition. Duke Math. J., 124(2):309–350, 2004. http://www.ma.utexas.edu/mp_arc/c/01-486.pdf.

    Article  MATH  MathSciNet  Google Scholar 

  39. R.I. Grigorchuk, P. Linnell, T. Schick, and A. Zuk. On a question of Atiyah. C.R. Acad. Sci. Paris Sér. I Math., 331(9):663–668, 2000.

    MATH  MathSciNet  Google Scholar 

  40. R.I. Grigorchuk and A. Zuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata, 87:209–244, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1999.

    MATH  Google Scholar 

  42. M. Gromov. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math., 53:53–73, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Gromov and M.A. Shubin. von Neumann spectra near zero. Geom. Funct. Anal., 1(4):375–404, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  44. J.W. Kantelhardt and A. Bunde. Electrons and fractons on percolation structures at criticality: Sublocalization and superlocalization. Phys. Rev. E, 56:6693–6701, 1997.

    Article  Google Scholar 

  45. [45] J.W. Kantelhardt and A. Bunde. Wxtended fractons and localized phonons on percolation clusters. Phys. Rev. Lett., 81:4907–4910, 1998.

    Article  Google Scholar 

  46. J.W. Kantelhardt and A. Bunde. Wave functions in the Anderson model and in the quantum percolation model: a comparison. Ann. Phys. (8), 7(5–6):400–405, 1998.

    Article  MathSciNet  Google Scholar 

  47. J.W. Kantelhardt and A. Bunde. Sublocalization, superlocalization, and violation of standard single-parameter scaling in the Anderson model. Phys. Rev. B, 66, 2002.

    Google Scholar 

  48. H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336–354, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  49. H. Kesten. Percolation theory for mathematicians, volume 2 of Progress in Probability and Statistics. Birkhäuser, Boston, 1982.

    MATH  Google Scholar 

  50. S. Kirkpatrick and T.P. Eggarter. Localized states of a binary alloy. Phys. Rev. B, 6:3598, 1972.

    Article  Google Scholar 

  51. W. Kirsch. Estimates on the difference between succeeding eigenvalues and Lifshitz tails for random Schrödinger operators. In Stochastic processes—mathematics and physics, II (Bielefeld, 1985), volume 1250 of Lecture Notes in Math., pages 138–151. Springer, Berlin, 1987.

    Google Scholar 

  52. W. Krisch and F. Martinelli. Large deviations and Lifshitz singularity of the integrated density of states of random Hamitonians. Commun. Math. Phys., 89:27–40, 1983.

    Article  Google Scholar 

  53. W. Kirsch and B. Metzger. The integrated density of states for random Schrödinger operators. In Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, volume 76 of Proceedings of Symposia in Pure Mathematics, pages 649–698. AMS, 2007. http://www.arXiv.org/abs/math-ph/0608066.

    Google Scholar 

  54. W. Kirsch and P. Müller. Spectral properties of the Laplacian on bond-percolation graphs. Math. Zeit., 252(4):899–916, 2006. http://www.arXiv.org/abs/math-ph/0407047.

    Article  MATH  Google Scholar 

  55. W. Kirch and B. Simon. Lifshitz tails for periodic plus random potentials. J. Statist. Phys., 42:799–808, 1986.

    Article  MathSciNet  Google Scholar 

  56. F. Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2):335–396, 1999.

    Article  MathSciNet  Google Scholar 

  57. F. Klopp. Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix. Rev. Math. Phys., 12(4):575–620, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  58. F. Klopp and S. Nakamura. A note on Anderson localization for the random hopping model. J. Math. Phys., 44(11):4975–4980, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  59. F. Klopp and L. Pastur. ative singular Poisson potential. Commun. Math. Phys., 206(1):57–103, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  60. S. Kondej and I. Veselić. Spectral gap of segments of periodic waveguides. Lett. Math. Phys., 79(1):95–98, 2007. http://arxiv.org/abs//math-ph/0608005.

    Article  MATH  MathSciNet  Google Scholar 

  61. P. Kuchment. Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38(22):4887–4900, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  62. P.A. Kuchment. On the Floquet theory of periodic difference equations. In Geometrical and algebaraical aspects in several complex variables (Cetraro, 1989), volume 8 of Sem. Conf., pages 201–209. EditEl, Rende, 1991.

    Google Scholar 

  63. H. Kunz and B. Souillard. Sur le spectre des opérateur aux différence finies aléatoires. Commun. Math. Phys., 78:201–246, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  64. D. Lenz, P. Müller, and I. Veselić. Uniform existence of the integrated density of states for models on ℤd. Positivity, in press. http://arxiv.org/abs/math-ph/0607063.

    Google Scholar 

  65. D. Lenz, N. Peyerimhoff, and I. Veselić. Von Neumann algebras, groupoids and the integrated density of states. arXiv.org/abs/math-ph/0203026, Math. Phys. Anal. Geom. http://dx.doi.org/10.1007/s11040-007-9019-2.

    Google Scholar 

  66. D. Lenz and I. Veselic. Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence. http://arxiv.org/abs/0709.2836.

    Google Scholar 

  67. H. Leschke, P. Müller, and S. Warzel. A survey of rigorous results on random Schrödinger operators for amorphous solids. Markov Process. Related Fields, 9(4):729–760, 2003. http://www.arXiv.org/cond-mat/020708).

    MATH  MathSciNet  Google Scholar 

  68. M. Levitin and E. Shargorodsky. Spectral pollution and second-order relative spectra for self-adjoint operators. IMA J. Numer. Anal., 24(3):393–416, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  69. I.M. Lifshitz. Structure of the energy spectrum of the impurity bands in disordered solid solutions. Sov. Phys. JETP, 17:1159–1170, 1963. [Russian orginal: Zh. Eksp. Ter. Fiz. 44:1723–1741].

    Google Scholar 

  70. I.M. Lifshitz. The energy spectrum of disordered systems. Adv. Phys., 13:483–536, 1964.

    Article  Google Scholar 

  71. I.M. Lifshitz. Energy spectrum and the quantum states of disordered condensed systems. Sov. Phys. Usp., 7:549–573, 1965. [Russian original: Uspehi Fiz. Nauk 83: 617–663 (1964).]

    Article  MathSciNet  Google Scholar 

  72. E. Lindenstrauss. Pointwise theorems for amenable groups. Invent. Math., 146(2): 259–295, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  73. W. Lück. Approximating L 2-invariants by their finite-dimensional analogues. Geom. Funct. Anal., 4(4):455–481, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  74. W. Lück. L 2-invariants of regular coverings of compact manifolds and CW-complexes. In Handbook of geometric topology, pages 735–817. North-Holland, Amsterdam, 2002. http://www.math.uni-muenster.de/u/lueck/publ/lueck/hand.pdf.

    Google Scholar 

  75. W. Lück. L 2-invariants: theory and applications to geometry and K-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3rd Series. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  76. R. Lyons, Probability on trees and networks. (Cambridge University Press, Cambridge, in preparation). Written with assistance from Y. Peres. Current version available at http://php.indiana.edu/≈rdlyons/.

    Google Scholar 

  77. M. Men’shikov. Coincidence of critical points in percolation problems. Sov. Math., Dokl., 33:856–859, 1986.

    Google Scholar 

  78. M.V. Men’shikov, S.A. Molchanov, and A.F. Sidorenko. Percolation theory and some applications. In Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 24 (Russian), Itogi Nauki i Tekhniki, pages 53–110, i. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986. Translated in J. Soviet Math. 42 (1988), no. 4, 1766–1810, http://dx.doi.org/10.1007/BF01095508.

    Google Scholar 

  79. B. Metzger. Assymptotische Eigenschaften im Wechselspiel von Diffusion und Wellenausbreitung in zufälligen Medien. PhD thesis, TU Chemnitz, 2005.

    Google Scholar 

  80. G.A. Mezincescu. Bounds on the integrated density of electronic states for disordered Hamiltonians. Phys. Rev. B, 32:6272–6277, 1985.

    Article  Google Scholar 

  81. G.A. Mezincescu. Internal Lifshitz singularities of disordered finite-difference Schröndinger operators. Comm. Math. Phys., 103:167–176, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  82. G.A. Mezincescu. Lifschitz singularities for periodic operators plus random potentials. J. Statist. Phys., 49(5–6):1181–1190, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  83. P. Müller and P. Stollman. Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs. J. Funct. Anal., 252(1):233–246, 2007. http://www.arxiv.org/math-ph/0506053.

    Article  MATH  MathSciNet  Google Scholar 

  84. T. Nagnibeda. An upper bound for the spectral radius of a random walk on surface groups. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 240 (Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2):154–165, 293–294, 1997.

    Google Scholar 

  85. S. Nakamura. Lifshitz tail for 2D discrete Schrödinger operator with random magnetic field. Ann. Henri Poincaré, 1(5):823–835, 2000.

    Article  MATH  Google Scholar 

  86. S. Nakao. On the spectral distribution of the Schrödinger operator with random potential. Japan. J. Math. (N.S.), 3(1):111–139, 1977.

    MathSciNet  Google Scholar 

  87. S.P. Novikov and M.A. Shubin. Morse inequalities and von Neumann invariants of non-simply connected manifolds. Uspekhi Matem. Nauk, 41(5):222, 1986. (In Russian.)

    Google Scholar 

  88. S.P. Novikov and M.A. Shubin. Morse inequalities and von Neumann II1-factors. Dokl. Akad. Nauk SSSR, 289(2):289–292, 1986.

    MathSciNet  Google Scholar 

  89. S.-I. Oguni. The secondary Novikov-Shubin invariants of groups and quasi-isometry. J. Math. Soc. Japan, 59(1):223–237, 2007. http://www.math.kyoto-u.ac.jp/ preprint/preprint2005.html.

    Article  MATH  MathSciNet  Google Scholar 

  90. P. Pansu. Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory Dynam. Systems, 3(3):415–445, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  91. L.A. Pastur. Selfaverageability of the number of states of the Schrödinger equation with a random potential. Mat. Fiz. i Funkcional. Anal., (Vyp. 2):111–116, 238, 1971.

    MathSciNet  Google Scholar 

  92. L.A. Pastur. Behaviour of some Wiener integrals as t→∞ and the density of states of the Schrödinger equation with a random potential. Teor. Mat. Fiz., 32:88–95, 1977.

    MATH  MathSciNet  Google Scholar 

  93. L.A. Pastur. Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys., 75:179–196, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  94. L.A. Pastur and A.L. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992.

    MATH  Google Scholar 

  95. N. Peyerimhoff and I. Veselić. Integrated density of states for ergodic random Schrödinger operators on manifolds. Geom. Dedicata, 91(1):117–135, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  96. A. Procacci and B. Scoppola. Infinite graphs with a nontrivial bond percolation threshold: some sufficient conditions. J. Statist. Phys., 115(3–4):1113–1127, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  97. Y. Shapir, A. Aharony, and A.B. Harris. Localization and quantum percolation. Phys. Rev. Lett., 49(7):486–489, 1982.

    Article  MathSciNet  Google Scholar 

  98. B. Simon. Lifschitz tails for the Anderson model. J. Statist. Phys., 38:65–76, 1985.

    Article  MathSciNet  Google Scholar 

  99. B. Simon. Internal Lifschitz tails. J. Statist. Phys., 46(5–6):911–918, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  100. F. Sobieczky. An interlacing technique for spectra of random walks and its application to finite percolation clusters. www.arXiv.org/math/0504518.

    Google Scholar 

  101. P. Stollmann. Caught by disorder: A Course on Bound States in Random Media, volume 20 of Progress in Mathematical Physics. Birkhäuser, 2001.

    Google Scholar 

  102. M.A. Shubin. Almost periodic functions and partial differential operators. Uspehi Mat. Nauk, 33(2(200)):3–47, 247, 1978.

    MATH  Google Scholar 

  103. M.A. Shubin. Spectral theory and the index of elliptic operators with almost-periodic coefficients. Uspekhi Mat. Nauk, 34(2(206)):95–135, 1979. [English translation: Russ. Math. Surveys, 34:109–157, 1979.]

    MATH  MathSciNet  Google Scholar 

  104. T. Sunada. Fundamental groups and Laplacians. In Geometry and analysis on manifolds (Katata/Kyoto, 1987), pages 248–277. Springer, Berlin, 1988.

    Google Scholar 

  105. A.-S. Sznitman. Brownian motion, obstacles and random media. Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  106. G. Temple. The theory of Rayleigh’s principle as applied to continuous systems. Proc. Roy. Soc. London A, 119:276–293, 1028.

    Google Scholar 

  107. W. Thirring. Lehrbuch der mathematischen Physik. Band 3. Springer-Verlag, Vienna, second edition, 1994. Quantenmechanik von Atomen und Molekülen.

    Google Scholar 

  108. L. van den Dries and A. Wilkie. Gromov’s theorem on groups of polynomial growth and elementary logic. J. Algebra, 89:349–374, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  109. R. van der Hofstad, W. König, and P. Mörters. The universality classes in the parabolic Anderson model. Comm. Math. Phys., 267(2):307–353, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  110. I. Veselić. Integrated density of states and Wegner estimates for random Schrödinger operators. Contemp. Math., 340:98–184, 2004. http://arXiv.org/math-ph/0307062.

    Google Scholar 

  111. I. Veselić. Quantum site percolation on amenable graphs. In Proceedings of the Conference on Applied Mathematics and Scientific Computing, pages 317–328, Dordrecht, 2005. Springer. http://arXiv.org/math-ph/0308041.

    Google Scholar 

  112. I. Veselić. Spectral analysis of percolation Hamiltonians. Math. Ann., 331(4):841–865, 2005. http://arXiv.org/math-ph/0405006.

    Article  MATH  MathSciNet  Google Scholar 

  113. I. Veselić. Existence and regularity properties of the integrated density of states of random Schrödinger Operators, Habilitation thesis, TU Chemnitz, 2006. Lecture Notes in Mathematics 1917, Springer, 2007.

    Google Scholar 

  114. I. Veselić. Spectral properties of Anderson-percolation Hamiltonians. In Oberwolfach Rep. [31], pages 545–547. http://www.mfo.de/programme/schedule/2006/08b/OWR_2006_09.pdf.

    Google Scholar 

  115. W. Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  116. J.A. Wolf. Growth of finitely generated solvable groups and curvature of Riemanniann manifolds. J. Differential Geometry, 2:421–446, 1968.

    MATH  MathSciNet  Google Scholar 

  117. A. Żuk. A remark on the norm of a random walk on surface groups. Colloq. Math., 72(1):195–206, 1997.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Autunović, T., Veselić, I. (2008). Spectral Asymptotics of Percolation Hamiltonians on Amenable Cayley Graphs. In: Janas, J., Kurasov, P., Naboko, S., Laptev, A., Stolz, G. (eds) Methods of Spectral Analysis in Mathematical Physics. Operator Theory: Advances and Applications, vol 186. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8755-6_1

Download citation

Publish with us

Policies and ethics