Skip to main content

Creative Telescoping for Holonomic Functions

  • Chapter
  • First Online:
Computer Algebra in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

The aim of this article is twofold: on the one hand it is intended to serve as a gentle introduction to the topic of creative telescoping, from a practical point of view; for this purpose its application to several problems is exemplified. On the other hand, this chapter has the flavour of a survey article: the developments in this area during the last two decades are sketched and a selection of references is compiled in order to highlight the impact of creative telescoping in numerous contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablinger, J., Blümlein, J., Klein, S., Schneider, C.: Modern summation methods and the computation of 2- and 3-loop Feynman diagrams. Nucl. Phys. B Proc. Suppl. 205–206(0), 110–115 (2010)

    Article  Google Scholar 

  2. Abramov, S.A.: When does Zeilberger’s algorithm succeed? Adv. Appl. Math. 30, 424–441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramov, S.A., Le, H.Q.: A criterion for the applicability of Zeilberger’s algorithm to rational functions. Discrete Math. 259(1–3), 1–17 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. J. Symb. Comput. 10(6), 571–591 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amdeberhan, T., Zeilberger, D.: Hypergeometric series acceleration via the WZ method. Electron. J. Comb. 4(2), R3 (1997)

    MathSciNet  Google Scholar 

  6. Amdeberhan, T., de Angelis, V., Lin, M., Moll, V.H., Sury, B.: A pretty binomial identity. Elem. Math. 67(1), 18–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amdeberhan, T., Koutschan, C., Moll, V.H., Rowland, E.S.: The iterated integrals ofln(1 + x n). Int. J. Number Theory 8(1), 71–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andrews, G.E., Paule, P.: Some questions concerning computer-generated proofs of a binomial double-sum identity. J. Symb. Comput. 16, 147–153 (1993)

    Article  MATH  Google Scholar 

  9. Andrews, G.E., Paule, P., Schneider, C.: Plane partitions VI. Stembridge’s TSPP theorem. Adv. Appl. Math. 34, 709–739 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. Appl. Math. 37(2), 139–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bećirović, A., Paule, P., Pillwein, V., Riese, A., Schneider, C., Schöberl, J.: Hypergeometric summation algorithms for high order finite elements. Computing 78(3), 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berkovich, A., Riese, A.: A computer proof of a polynomial identity implying a partition theorem of Göllnitz. Adv. Appl. Math. 28, 1–16 (2002)

    Article  MathSciNet  Google Scholar 

  13. Bernstein, J.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6(4), 273–285 (1972)

    Article  Google Scholar 

  14. Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials. Computing 80(4), 345–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions for H(curl) on tetrahedra. Adv. Appl. Math. 50(5), 749–769 (2013)

    Article  MathSciNet  Google Scholar 

  16. Böing, H., Koepf, W.: Algorithms for q-hypergeometric summation in computer algebra. J. Symb. Comput. 28, 777–799 (1999)

    Article  MATH  Google Scholar 

  17. Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, É.: Differential equations for algebraic functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Waterloo. ACM, New York (2007)

    Google Scholar 

  18. Bostan, A., Chen, S., Chyzak, F., Li, Z.: Complexity of creative telescoping for bivariate rational functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Munich, pp. 203–210. ACM, New York (2010)

    Google Scholar 

  19. Bostan, A., Chyzak, F., van Hoeij, M., Pech, L.: Explicit formula for the generating series of diagonal 3D rook paths. Séminaire Lotharingien de Combinatoire 66, B66a (2011)

    Google Scholar 

  20. Bostan, A., Boukraa, S., Christol, G., Hassani, S., Maillard, J.-M.: Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity. Technical report 1211.6031, arXiv (2012)

    Google Scholar 

  21. Bostan, A., Chen, S., Chyzak, F., Li, Z., Xin, G.: Hermite reduction and creative telescoping for hyperexponential functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Boston, pp. 77–84. ACM, New York (2013)

    Google Scholar 

  22. Bostan, A., Lairez, P., Salvy, B.: Creative telescoping for rational functions using the Griffiths-Dwork method. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Boston, pp. 93-100. ACM, New York (2013)

    Google Scholar 

  23. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Innsbruck (1965)

    Google Scholar 

  24. Cartier, P.: Démonstration “automatique” d’identités et fonctions hypergéometriques [d’après D. Zeilberger]. Astérisque 206, 41–91 (1991). Séminaire Bourbaki, 44ème année, 1991–1992, n746

    Google Scholar 

  25. Caruso, F.: A Macsyma implementation of Zeilberger’s fast algorithm. In: Strehl, V. (ed.) Séminaire Lotharingien de Combinatoire, S43c, pp. 1–8. Institut Girard Desargues, Université Claude Bernard Lyon-I, Villeurbanne (2000)

    Google Scholar 

  26. Chen, S., Kauers, M.: Order-degree curves for hypergeometric creative telescoping. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Grenoble, pp. 122–129 (2012)

    Google Scholar 

  27. Chen, S., Kauers, M.: Trading order for degree in creative telescoping. J. Symb. Comput. 47(8), 968–995 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, S., Singer, M.F.: Residues and telescopers for bivariate rational functions. Adv. Appl. Math. 49(2), 111–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, W.Y.C., Hou, Q.-H., Mu, Y.-P.: A telescoping method for double summations. J. Comput. Appl. Math. 196(2), 553–566 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Chen, S., Chyzak, F., Feng, R., Fu, G., Li, Z.: On the existence of telescopers for mixed hypergeometric terms. Technical report 1211.2430, arXiv (2012)

    Google Scholar 

  31. Chen, S., Kauers, M., Singer, M.F.: Telescopers for rational and algebraic functions via residues. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Grenoble, pp. 130–137. ACM, New York (2012)

    Google Scholar 

  32. Chyzak, F.: Fonctions holonomes en calcul formel. PhD thesis, École polytechnique (1998)

    Google Scholar 

  33. Chyzak, F.: Gröbner bases, symbolic summation and symbolic integration. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. Volume 251 of London Mathematical Society Lecture Notes Series, pp. 32–60. Cambridge University Press, Cambridge (1998). Proceedings of the Conference 33 Years of Gröbner Bases

    Google Scholar 

  34. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217(1–3), 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symb. Comput. 26, 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Seoul, pp. 111–118. ACM, New York (2009)

    Google Scholar 

  37. Combot, T., Koutschan, C.: Third order integrability conditions for homogeneous potentials of degree − 1. J. Math. Phys. 53(8), 082704 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  38. Coutinho, S.C.: A Primer of Algebraic D-Modules. Volume 33 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge/New York (1995)

    Google Scholar 

  39. Ekhad, S.B., Zeilberger, D.: A WZ proof of Ramanujan’s formula for π. In: Rassias, J.M. (ed.) Geometry, Analysis, and Mechanics, pp. 107–108. World Scientific, Singapore (1994)

    Google Scholar 

  40. Feynman, R.P., Leighton, R. (eds.): Surely You’re Joking, Mr. Feynman!: Adventures of a Curious Character. W. W. Norton, New York (1985)

    Google Scholar 

  41. Garoufalidis, S., Koutschan, C.: Irreducibility of q-difference operators and the knot 74. Algebr. Geom. Topol. (2013, To appear). Preprint on arXiv:1211.6020

    Google Scholar 

  42. Garoufalidis, S., Lê, T.T.Q.: The colored Jones function is q-holonomic. Geom. Topol. 9, 1253–1293 (2005). (electronic)

    Google Scholar 

  43. Garoufalidis, S., Sun, X.: The non-commutative A-polynomial of twist knots. J. Knot Theory Ramif. 19(12), 1571–1595 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gradshteyn, I.S., Ryzhik, J.M., Jeffrey, A., Zwillinger, D. (eds.): Table of Integrals, Series, and Products, 7th edn. Academic/Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  45. Graham, R.L., Knuth, D.E., Patashnik, O: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    Google Scholar 

  46. Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41–48 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Guo, Q.H., Hou, Q.-H., Sun, L.H.: Proving hypergeometric identities by numerical verifications. J. Symb. Comput. 43(12), 895–907 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ishikawa, M., Koutschan, C.: Zeilberger’s holonomic ansatz for Pfaffians. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Grenoble, pp. 227–233. ACM, (2012)

    Google Scholar 

  49. Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kauers, M.: Summation algorithms for Stirling number identities. J. Symb. Comput. 42(10), 948–970 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kauers, M.: The holonomic toolkit. In: Blümlein, J., Schneider, C. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Springer, Wien (2013)

    Google Scholar 

  52. Kauers, M., Paule, P.: The Concrete Tetrahedron. Text and Monographs in Symbolic Computation, 1st edn. Springer, Wien (2011)

    Google Scholar 

  53. Kauers, M., Schneider, C.: Automated proofs for some Stirling number identities. Electron. J. Comb. 15(1), 1–7 (2008). R2

    Google Scholar 

  54. Klein, S.: Heavy flavor coefficient functions in deep-inelastic scattering at O(a s 2) and large virtualities. Diplomarbeit, Universität Potsdam (2006)

    Google Scholar 

  55. Koepf, W.: Algorithms for m-fold hypergeometric summation. J. Symb. Comput. 20, 399–417 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. Koepf, W.: REDUCE package for the indefinite and definite summation. SIGSAM Bull. 29(1), 14–30 (1995)

    Article  MATH  Google Scholar 

  57. Koepf, W.: Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities. Advanced Lectures in Mathematics. Vieweg Verlag, Braunschweig/Wiesbaden (1998)

    Book  MATH  Google Scholar 

  58. Koepf, W., Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Koornwinder, T.H.: On Zeilberger’s algorithm and its q-analogue. J. Comput. Appl. Math. 48(1–2), 91–111 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. Koornwinder, T.H.: Identities of nonterminating series by Zeilberger’s algorithm. J. Comput. Appl. Math. 99(1–2), 449–461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. Koutschan, C.: Advanced applications of the holonomic systems approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz (2009)

    Google Scholar 

  62. Koutschan, C.: Eliminating human insight: an algorithmic proof of Stembridge’s TSPP theorem. In: Amdeberhan, T., Medina, L.A., Moll, V.H. (eds.) Gems in Experimental Mathematics. Volume 517 of Contemporary Mathematics, pp. 219–230. American Mathematical Society, Providence (2010)

    Chapter  Google Scholar 

  63. Koutschan, C.: A fast approach to creative telescoping. Math. Comput. Sci. 4(2–3), 259–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Koutschan, C.: HolonomicFunctions (user’s guide). Technical report 10-01, RISC Report Series, Johannes Kepler University, Linz (2010). http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  65. Koutschan, C.: Lattice Green’s functions of the higher-dimensional face-centered cubic lattices. J. Phys. A Math. Theor. 46(12), 125005 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  66. Koutschan, C., Moll, V.H.: The integrals in Gradshteyn and Ryzhik. Part 18: some automatic proofs. SCIENTIA Ser. A Math. Sci. 20, 93–111 (2011)

    Google Scholar 

  67. Koutschan, C., Thanatipanonda, T.: Advanced computer algebra for determinants. Ann. Comb. (2013, To appear). Preprint on arXiv:1112.0647

    Google Scholar 

  68. Koutschan, C., Kauers, M., Zeilberger, D.: Proof of George Andrews’s and David Robbins’s q-TSPP conjecture. Proc. Natl. Acad. Sci. 108(6), 2196–2199 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Koutschan, C., Lehrenfeld, C., Schöberl, J.: Computer algebra meets finite elements: an efficient implementation for Maxwell’s equations. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects. Volume 1 of Texts and Monographs in Symbolic Computation, pp. 105–121. Springer, Wien (2012)

    Chapter  Google Scholar 

  70. Lyons, R., Paule, P., Riese, A.: A computer proof of a series evaluation in terms of harmonic numbers. Appl. Algebra Eng. Commun. Comput. 13, 327–333 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  71. Majewicz, J.E.: WZ-style certification and Sister Celine’s technique for Abel-type sums. J. Differ. Equ. Appl. 2(1) 55–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. Mohammed, M. Zeilberger, D.: Sharp upper bounds for the orders of the recurrences output by the Zeilberger and q-Zeilberger algorithms. J. Symb. Comput. 39(2), 201–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  74. Paule, P.: Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type. Electron. J. Comb. 1, 1–9 (1994)

    MathSciNet  ADS  Google Scholar 

  75. Paule, P., Riese, A.: A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (eds.) Special Functions, q-Series and Related Topics. Volume 14 of Fields Institute Communications, pp. 179–210. American Mathematical Society, Providence (1997)

    Google Scholar 

  76. Paule, P., Schorn, M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20(5/6), 673–698 (1995). http://www.risc.jku.at/research/combinat/software/PauleSchorn/

  77. Paule, P., Strehl, V.: Symbolic summation—some recent developments. In: Fleischer, J. et al. (eds.) Computer Algebra in Science and Engineering—Algorithms, Systems, and Applications, pp. 138–162. World Scientific, Singapore (1995)

    Google Scholar 

  78. Paule, P., Suslov, S.: Relativistic Coulomb integrals and Zeilbergers holonomic systems approach I. In: Blümlein, J., Schneider, C. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Springer, Wien (2013)

    Google Scholar 

  79. Paule, P., Pillwein, V., Schneider, C., Schöberl, J.: Hypergeometric summation techniques for high order finite elements. In: PAMM, Weinheim, vol. 6, pp. 689–690. Wiley InterScience (2006)

    Google Scholar 

  80. Petkovšek, M., Wilf, H.S., Zeilberger, D.: A = B. A. K. Peters, Ltd., Wellesley (1996)

    Google Scholar 

  81. Prodinger, H.: Descendants in heap ordered trees or a triumph of computer algebra. Electron. J. Comb. 3(1), R29 (1996)

    MathSciNet  Google Scholar 

  82. Raab, C.G.: Definite integration in differential fields. PhD thesis, Johannes Kepler Universität Linz (2012)

    Google Scholar 

  83. Riese, A.: A Mathematica q-analogue of Zeilberger’s algorithm for proving q-hypergeometric identities. Master’s thesis, RISC, Johannes Kepler University Linz (1995)

    Google Scholar 

  84. Riese, A.: Fine-tuning Zeilberger’s algorithm—the methods of automatic filtering and creative substituting. In: Garvan, F.G., Ismail, M.E.H. (eds.) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Volume 4 of Developments in Mathematics, pp. 243–254. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  85. Riese, A.: qMultiSum—A package for proving q-hypergeometric multiple summation identities. J. Symb. Comput. 35, 349–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  86. Schneider, C.: Symbolic summation in difference fields. PhD thesis, RISC, Johannes Kepler University, Nov 2001

    Google Scholar 

  87. Schneider, C.: Simplifying multiple sums in difference fields. In: Blümlein, J., Schneider, C. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Springer, Wien (2013)

    Chapter  Google Scholar 

  88. Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. Technical report 1301.6617, arXiv (2013)

    Google Scholar 

  89. Strehl, V.: Binomial identities—combinatorial and algorithmic aspects. Discrete Math. 136 (1–3), 309–346 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  90. Takayama, N.: An algorithm of constructing the integral of a module—an infinite dimensional analog of Gröbner basis. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Tokyo, pp. 206–211. ACM, New York (1990)

    Google Scholar 

  91. Tefera, A.: MultInt, a MAPLE package for multiple integration by the WZ method. J. Symb. Comput. 34(5), 329–353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  92. van der Poorten, A.: A proof that Euler missed—Apéry’s proof of the irrationality of ζ(3). An informal report. Math. Intell. 1, 195–203 (1979)

    Article  MATH  Google Scholar 

  93. Wegschaider, K.: Computer generated proofs of binomial multi-sum identities. Master’s thesis, RISC, Johannes Kepler University Linz, May 1997. http://www.risc.jku.at/research/combinat/software/MultiSum/

  94. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent. Math. 108(1), 575–633 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  95. Yen, L.: A two-line algorithm for proving terminating hypergeometric identities. J. Math. Anal. Appl. 198(3), 856–878 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  96. Yen, L.: A two-line algorithm for proving q-hypergeometric identities. J. Math. Anal. Appl. 213(1), 1–14 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  97. Zeiberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80(2), 207–211 (1990)

    Article  MathSciNet  Google Scholar 

  98. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  99. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11, 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  100. Zeilberger, D.: Three recitations on holonomic systems and hypergeometric series. J. Symb. Comput. 20(5–6), 699–724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  101. Zeilberger, D.: The holonomic ansatz II. Automatic discovery(!) and proof(!!) of holonomic determinant evaluations. Ann. Comb. 11(2), 241–247 (2007)

    Google Scholar 

  102. Zhang, X.-K., Wan, J., Lu, J.-J., Xu, X.-P.: Recurrence and Pólya number of general one-dimensional random walks. Commun. Theor. Phys. 56(2), 293 (2011)

    Article  ADS  MATH  Google Scholar 

  103. Zudilin, W.: An Apéry-like difference equation for Catalan’s constant. Electron. J. Comb. 10(1), #R14 (2003)

    Google Scholar 

  104. Zudilin, W.: Apéry’s theorem. Thirty years after [an elementary proof of Apéry’s theorem]. Int. J. Math. Comput. Sci. 4(1), 9–19 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Koutschan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Koutschan, C. (2013). Creative Telescoping for Holonomic Functions. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics