Skip to main content
Book cover

Ribosomes pp 303–319Cite as

Dynamic views of ribosome function: Energy landscapes and ensembles

  • Chapter

Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) (reviewed in Munro et al., 2009) and cryo-electron microscopy (cryo-EM) investigations (Frank and Spahn, 2006; Spahn and Penczek, 2009; Fischer et al., 2010) of the translation apparatus reveal the ribosome’s propensity to undergo large-scale fluctuations in conformation during function. Progress in these areas, building upon achievements in high-resolution structure determination of ribosomal subunits and functional complexes of the ribosome (Yusupov et al., 2001; Wekselman et al., 2009: Zhang et al., 2009; Gao et al., 2009; Demeshkina et al., 2010; Stanley et al., 2010), combined with an ever increasing breadth of computational modeling, simulation (Sanbonmatsu and Tung, 2007; Whitford et al., 2010a), and bioinformatics approaches (Roberts et al., 2008; Alexander et al., 2010), offers the potential to further broaden our understanding of the dynamic nature of the ribosome and translation components during protein synthesis. The large fluctuations observed by single-molecule studies, and the multitude of conformations reported by cryo-EM, make it clear that each “state” of the ribosome is in fact an ensemble of structurally similar configurations that are localized to a particular minimum on the free-energy landscape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J (2008) Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol Cell 32: 190–197

    PubMed  CAS  Google Scholar 

  • Besseová I, Réblová K, Leontis NB, Sponer J (2010) Molecular dynamics simulations sugg est that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nuc Acid Res 38:6247–6264; DOI:101093/nar/gkq414

    Google Scholar 

  • Best RB, Hummer G (2010) Coordinate-dependent diffusion in protein folding. Proc Natl Acad Sci USA 19: 1088–1093

    Google Scholar 

  • Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD (2004a) tRNA selection and kinetic proofreading in translation. Nat Struct Mol Bio 11: 1008–1014

    CAS  Google Scholar 

  • Blanchard SC, Kim HD, Gonzalez RL Jr, Puglisi JD, Chu S (2004b) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101: 12893–12898

    PubMed  CAS  Google Scholar 

  • Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Op Struct Bio 19: 103–109

    CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4: 187–217

    CAS  Google Scholar 

  • Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in a random energy model (with applications to protein folding). J Phys Chem 93: 6902–6915

    CAS  Google Scholar 

  • Cho SS, Levy Y, Wolynes PG (2006) P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proc Natl Acad Sci USA 103: 586: 591

    PubMed  CAS  Google Scholar 

  • Cornish PV, Ermolenko DN, Noller HF, Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30: 578–588

    PubMed  CAS  Google Scholar 

  • Cornish P, Ermolenko D, Staple D, Hoang L, Hickerson R, Noller H, Ha T (2009) Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci USA 106: 2571–2576

    PubMed  CAS  Google Scholar 

  • Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc Natl Acad Sci USA 103: 9885–9890

    PubMed  CAS  Google Scholar 

  • Demeshkina N, Jenner L, Yusupova G, Yusupov M (2010) Interactions of the ribosome with mRNA and tRNA. Curr Op Struct Biol 20: 325–332

    CAS  Google Scholar 

  • Dorner S, Brunelle JL, Sharma D, Green R (2006) The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat Struct Mol Biol 13: 234–241

    PubMed  CAS  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96: 108101

    PubMed  Google Scholar 

  • Faradjian AK, Elber R (2004) Computing time scales from reaction coordinates by milestoning. J Chem Phys 120: 10880–10889

    PubMed  CAS  Google Scholar 

  • Fei J, Kosuri P, MacDougall DD, Gonzalez RL Jr. (2008) Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol Cell 30: 348–359

    PubMed  CAS  Google Scholar 

  • Fei J, Bronson JE, Hofman JM, Srinivas RL, Wiggins CH, Gonzalez RL (2009) Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movement during translation. Proc Natl Acad Sci USA 106: 15702–15707

    PubMed  CAS  Google Scholar 

  • Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466: 329–333

    PubMed  CAS  Google Scholar 

  • Fluitt A, Pienaar E, Viljoen H (2007) Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comp Bio Chem 31: 335–346

    CAS  Google Scholar 

  • Frank J, Sengupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M (2005) The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett 579: 959–962

    PubMed  CAS  Google Scholar 

  • Frank J, Spahn CM (2006) The ribosome and the mechanism of protein synthesis. Rep Prog Phys 69: 1383–1417

    CAS  Google Scholar 

  • Frank J, Gao H, Sengupta J, Gao N, Taylor DJ (2007) The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 104: 19671–19678

    PubMed  CAS  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent x-ray-diffraction as a probe of protein structural dynamics. Nature 280: 558–563

    PubMed  CAS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes of motions of proteins. Science 254: 1598–1603

    PubMed  CAS  Google Scholar 

  • Gao Y-G, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326: 694–699

    PubMed  CAS  Google Scholar 

  • Garcia AE (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett 68: 2696–2699

    PubMed  CAS  Google Scholar 

  • Garcia AE, Onuchic JN (2003) Folding a protein in a computer: An atomic description of the folding/unfolding of protein A. Proc Natl Acad Sci USA 13898–13903

    Google Scholar 

  • Garcia AE, Krumhansl JA, Frauenfelder H (1997) Variations on a theme by Debye and Waller: From simple crystals to proteins. Prot Struct Func Gen 29: 153–160

    CAS  Google Scholar 

  • Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS (1976) Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol 101: 537–552

    PubMed  CAS  Google Scholar 

  • Geggier P, Dave R, Feldman MB, Terry DS, Altman RB, Munro JB, Blanchard SC (2010) Conformational sampling of amino-acyl-tRNA during selection on the ribosome. J Mol Biol 399: 576–595; DOI:101016/j. jmb.2010.04038

    PubMed  CAS  Google Scholar 

  • Gesteland RF, Atkins JF (1996) Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65: 741–768

    PubMed  CAS  Google Scholar 

  • Gromadski KB, Rodnina MV (2004) Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol Cell 13: 191–200

    PubMed  CAS  Google Scholar 

  • Hyeon C, Onuchic JN (2007) Mechanical control of the directional stepping dynamics of the kinesin motor. Proc Natl Acad Sci USA 104: 17382–17387

    PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71: 4135–4139

    PubMed  CAS  Google Scholar 

  • Johansson M, Bouakaz E, Lovmar M, Ehrenberg M (2008) The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 30: 589–598

    PubMed  CAS  Google Scholar 

  • Julian P, Konevega AL, Scheres SH, Lazaro M, Gil D, Wintermeyer W, Rodnina MV, Valle M (2008) Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc Natl Acad Sci USA 105: 16924–16927

    PubMed  CAS  Google Scholar 

  • Klaholz BP, Myasnikov AG, van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427: 862–865

    PubMed  CAS  Google Scholar 

  • Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19: 120–127

    PubMed  CAS  Google Scholar 

  • Komatsuzuki T, Hoshino K, Matsunaga Y, Rylance GJ, Johnston RL, Wales DJ (2005) How many dimensions are required to approximate the potential energy landscape of a model protein? J Chem Phys 122: 084714

    Google Scholar 

  • Korostelev A, Noller HF (2007) Analysis of structural dynamics in the ribosome byTLS crystallographic refinement. J Mol Biol 373: 1058–1070

    PubMed  CAS  Google Scholar 

  • Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci USA 105: 19684–19689

    PubMed  CAS  Google Scholar 

  • Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media, 2nd ed. Reed Educational and Professional Publishing, Oxford

    Google Scholar 

  • Lee T-H, Blanchard SC, Kim HD, Puglisi JD, Chu S (2007) The role of fluctuations in tRNA selection by the ribosome. Proc Natl Acad Sci USA 104: 13661–13665

    PubMed  CAS  Google Scholar 

  • Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels-A kinetic approach to the sequence structure relationship. Proc Natl Acad Sci USA 89: 8721–8725

    PubMed  CAS  Google Scholar 

  • Lu Q, Wang J (2009) Kinetics and statistical distributions of single-molecule conformational dynamics. J Phys Chem B 113: 1517–1521

    PubMed  CAS  Google Scholar 

  • Marshall RA, Dorywalska M, Puglisi JD (2008) Irreversible chemical steps control intersubunit dynamics during translation. Proc Natl Acad Sci USA 105: 15364–15369

    PubMed  CAS  Google Scholar 

  • Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci USA 100: 12570–12575

    PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, O’Connor, Blanchard SC (2007) Identification of two distinct hybrid-state intermediates on the ribosome. Mol Cell 25: 505–517

    PubMed  CAS  Google Scholar 

  • Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC (2009) Navigating the ribosome’s metastable energy landscape. Trends Biochem Sci 34: 390–400

    PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, Tung C-S, Sanbonmatsu KY, Blanchard SC (2010a) A fast dynamic mode of EF-G-bound ribosome. EMBO J 29: 770–781

    PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, Tung C-S, Cate JDH, Sanbonmatsu KY, Blanchard SC (2010b) Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc Natl Acad Sci USA 107: 709–714

    PubMed  CAS  Google Scholar 

  • Nettels D, Gopich IV, Hoffman A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci USA 104: 2655–2660

    PubMed  CAS  Google Scholar 

  • Nettels D, Hoffmann A, Schuler B (2008) Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J Phys Chem B 112: 6137–6146

    PubMed  CAS  Google Scholar 

  • Nymeyer H, Socci ND, Onuchic JN (2000) Landscape approaches for determining the ensemble of folding transition states: Success and failures hinge on the degree of frustration. Proc Natl Acad Sci USA 97: 634–639

    PubMed  CAS  Google Scholar 

  • Oliveira RJ, Whitford PC, Chahine J, Wang J, Onuchic JN, Leite VBP (2010) Exploring the origin of non-monotonic complex behavior and the effects of non-native interactions on the diffusive properties of protein folding. Biophys J (in press)

    Google Scholar 

  • Onuchic JN, Wolynes PG (1993) Energy landscapes, glass transitions, and chemical reaction dynamics in biomolecular or solvent environment. J Chem Phys 98: 2218–2224

    CAS  Google Scholar 

  • Onuchic JN, Nymeyer H, Garcia AE, Chahine J, Socci ND (2000) The energy landscape theory of protein folding: Insights into folding mechanisms and scenarios. Adv Protein Chem 53: 87–152

    PubMed  CAS  Google Scholar 

  • Onuchic JN, Kobayashi C, Miyashita O, Jennings P, Baldridge KK (2006) Exploring biomolecular machines: energy landscape control of biological reactions. Philos Trans Royal Soc 361: 1439–1443

    CAS  Google Scholar 

  • Orzechowski M, Tama F (2008) Flexible fitting of high-resolution X-ray structures into cryo-electron microscopy maps using biased molecular dynamics simulations. Biophys J 95: 5692–5705

    PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina M (1999) Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J 18: 3800–3807

    PubMed  CAS  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp Phys Commun 91: 1–41

    CAS  Google Scholar 

  • Penczek PA, Frank J, Spahn CMT (2006) A method of focused classification, based on the bootstrap 3D variance analysis, and its applications to EF-G-dependent translocation. 154: 184–194

    CAS  Google Scholar 

  • Peng C, Zhang L, Head-Gordon T (2010) Instantaneous normal modes as an unforced reaction coordinate for protein conformational transitions. Biophys J 98: 2356–2364

    PubMed  CAS  Google Scholar 

  • Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys J 92: 3817–3829

    PubMed  Google Scholar 

  • Pincus DL, Cho SS, Hyeon C, Thirumalai D (2009) Minimal models for proteins and RNA: From folding to function. In: Molecular biology of protein folding, Vol 84, pp 203–250. Elsevier Academic, San Diego, CA

    Google Scholar 

  • Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW, Starosta A, Doenhoefer A, Connel SR, Fucini P, Mielke T, Whitford PC, Onuchic JN, Yu Y, Sanbonmatsu KY, Hartmann RK, Penczek PA, Wilson DN, Spahn CMT (2010) Head swivel on the ribosome facilitates translocation via intra-subunit tRNA hybrid sites. Nature 468: 713–716 (under review)

    PubMed  CAS  Google Scholar 

  • Roberts E, Sethi A, Montoya J, Woese CR, Luthey-Schulten Z (2008) Molecular signatures of ribosomal evolution. Proc Natl Acad Sci USA 105: 13953–13958

    PubMed  CAS  Google Scholar 

  • Roberts RW, Eargle J, Luthey-Schulten Z (2010) Experimental and computational determination of tRNA dynamics. FEBS Lett 584: 376–386

    Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Fidelity of aminoacyl-tRNA selection on the ribosome: Kinetic and structural mechanisms. Annu Rev Biochem 70: 415–435

    PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY (2006a) Energy landscape of the ribosomal decoding center. Biochimie 88: 1053–1059

    PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY (2006b) Alignment/misalignment hypothesis for tRNA selection by the ribosome. Biochimie 88: 1075–1089

    PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY, Tung C-S (2007) High performance computing in biology: Multimillion atom simulations of nanoscale systems. J Struct Bio 157: 470–480

    CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao Y-G, Murphy FV, Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    PubMed  CAS  Google Scholar 

  • Schuette J-C, Murphy FC, Kelly AC, Weir JR, Geisebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CMT (2009) GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28: 1–11

    Google Scholar 

  • Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419: 743–748

    PubMed  CAS  Google Scholar 

  • Sievers A, Beringer M, Rodnina MV, Wolfenden R (2004) The ribosome as an entropy trap. Proc Natl Acad Sci USA 101: 7897–7901

    PubMed  CAS  Google Scholar 

  • Spahn CMT, Penczek PA (2009) Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. Curr Opin Struct Biol 19: 623–631

    PubMed  CAS  Google Scholar 

  • Spirin AS (2009) The ribosome as a conveying thermal ratchet machine. J Biol Chem 284: 21103–21119

    PubMed  CAS  Google Scholar 

  • Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 17: 289–293

    PubMed  CAS  Google Scholar 

  • Tama F, Valle M, Frank J, Brooks CL III (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100: 9319–9323

    PubMed  CAS  Google Scholar 

  • Tang J, Kang S-G, Saven, JG, Gai F (2009) Characterization of the cofactor-induced folding mechanism of a zinc-binding peptide using computationally designed mutants. J Mol Biol 389: 90–102

    PubMed  CAS  Google Scholar 

  • Trabuco LG, Harrison CB, Schreiner E, Schulten K (2010) Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18: 627–637

    PubMed  CAS  Google Scholar 

  • Thirumalai D, Hyeon C (2005) RNA and protein folding: Common themes and variations. Biochem 44: 4957–4970

    CAS  Google Scholar 

  • Thirumalai D, O’Brien EP, Morrison G, Hyeon C (2010) Theoretical perspectives on protein folding. Annu Rev Biophys 39: 159–183

    PubMed  CAS  Google Scholar 

  • Trylska J, Tozzini V, McCammon JA (2005) Exploring global motions and correlations in the ribosome. Biophys J 89: 1455–1463

    PubMed  CAS  Google Scholar 

  • Vaiana AC, Sanbonmatsu KY (2009) Stochastic gating and drug-ribosome interactions. J Mol Biol 386: 648–661

    PubMed  CAS  Google Scholar 

  • Vanheel M, Frank J (1981) Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6: 187–194

    CAS  Google Scholar 

  • Villa E, Sengupta J, Trabuco L, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K, Frank J (2009) Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106: 1063–1068

    PubMed  CAS  Google Scholar 

  • Wales DJ (1984) Energy Landscapes: Applications to clusters, biomolecules and glasses. Cambridge University Press, Cam bridge

    Google Scholar 

  • Wang J (2003) Statistics, pathways and dynamics of single molecule protein folding. J Chem Phys 118: 952–958

    CAS  Google Scholar 

  • Wang Y, Rader AJ, Bahar I, Jernigan RL (2004) Global ribosome motions revealed with elastic network model. J Struct Biol 147: 302–314

    PubMed  CAS  Google Scholar 

  • Weber G (1975) Energetics of ligand binding to proteins. Adv Protein Chem 29: 1–83

    PubMed  CAS  Google Scholar 

  • Wekselmen I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Birisio R, Yonath A (2009) Ribosome’s mode of function: myths, facts and recent results. J Pept Sci 15: 122–130

    Google Scholar 

  • Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) Conformational transistions of adenylate kinase: switching by cracking. J Mol Biol 366: 1661–1671

    PubMed  CAS  Google Scholar 

  • Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009a) An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields. Prot Struc Func Bioinfo 75: 430–441

    CAS  Google Scholar 

  • Whitford PC, Schug A, Saunders J, Hennelly SP, Onuchic JN, Sanbonmatsu KY (2009b) Nonlocal helix formation is key to understanding S-Adenosylmethionine-1 riboswitch function. Biophys J 96: L7–L9

    PubMed  Google Scholar 

  • Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY (2010a) Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. RNA 16: 1196–1204; DOI: 101261/rna.2 035410

    PubMed  CAS  Google Scholar 

  • Whitford PC, Onuchic JN, Sanbonmatsu KY (2010b) Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome J Amer Chem Soc 132: 13170–13171 (submitted)

    CAS  Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77: 3701–3707

    CAS  Google Scholar 

  • Wong V, Case DA (2008) Evaluating rotational diffusion from protein MD simulations. J Phys Chem B 112: 6013–6024.

    PubMed  CAS  Google Scholar 

  • Yang S, Roux B (2008) Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLOS Comp Biol 4: e1000047

    Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Leiberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å. Science 292: 883–896

    PubMed  CAS  Google Scholar 

  • Zhang G, Feyunin I, Miekley O, Valleriani A, Moura A, Ignatova Z (2010) Global and local depletion of ternary complex limits translation elongation. Nuc Acid Res 38: 4778–4787

    CAS  Google Scholar 

  • Zhang W, Dunkle A, Cate JHD (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325: 1014–1017

    PubMed  CAS  Google Scholar 

  • Zwanzig R (1988) Diffusion in a rough potential. Proc Natl Acad Sci USA 85: 2029–2030

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Whitford, P.C. et al. (2011). Dynamic views of ribosome function: Energy landscapes and ensembles. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_24

Download citation

Publish with us

Policies and ethics