Skip to main content

Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals

  • Chapter
Book cover Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

  • 782 Accesses

Abstract

I consider the Γ-limit to a three-dimensional Cosserat model as the aspect ratio h > 0 of a flat domain tends to zero. The bulk model involves already exact rotations as a second independent field intended to describe the rotations of the lattice in defective elastic crystals. The Γ-limit based on the natural scaling consists of a membrane like energy and a. transverse shear energy both scaling with h, augmented by a curvature energy due to the Cosserat bulk, also scaling with h. A technical difficulty is to establish equi-coercivity of the sequence of functional as the aspect ratio h tends to zero. Usually, equi-coercivity follows from a local coerciveness assumption. While the three-dimensional problem is well-posed for the Cosserat couple modulus μc ≥0, equi-coercivity needs a. strictly positive μc > 0. Then the Γ-limit model determines the midsorfaee deformation mH 1,2 (ω, ℝ3). For the true defective crystal case, however, μc=0 is appropriate. Without equi-coercivity, we obtain first an estimate of the Γ-lim in and Γ-lim sup which can be strengthened to the Γ-convergence result. The Reissner-Mindlin model is “almost” the linearization of the Γ-limit for μc=0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • I. Aganovic, J. Tambaca, and Z. Tutek. Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elasticity, 84:131–152, 2007a.

    Article  MathSciNet  Google Scholar 

  • I. Aganovic, J. Tambaca, and Z. Tutek. Derivation and justification of the model of micropolar elastic shells from three-dimensional linearized micropolar elasticity. Asympt. Anal., 51:335–361, 2007b.

    MATH  MathSciNet  Google Scholar 

  • H. Altenbach and P.A. Zhilin. The theory of simple elastic shells. In R. Kienzler, H. Altenbach, and I. Ott, editors, Theories of Plates and Shells. Critical Review and New Applications, Euromech Colloquium 444, pages 1–12. Springer, Heidelberg, 2004.

    Google Scholar 

  • S. Antman. Nonlinear Problems of Elasticity., volume 107 of Applied Mathematical Sciences. Springer, Berlin, 1995.

    MATH  Google Scholar 

  • G. Anzellotti, S. Baldo, and D. Percivale. Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity. Asymptotic Anal., 9:61–100, 1994.

    MATH  MathSciNet  Google Scholar 

  • I. Babuska and L. Li. The problem of plate modelling: theoretical and computational results. Comp. Meth. Appl. Mech. Engrg., 100:249–273, 1992.

    Article  MATH  Google Scholar 

  • T. Belytscbko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester, 2000.

    Google Scholar 

  • P. Betsch, P. Gruttmann, and E. Stein. A 4-node finite shell element for the implementation of general hyperelastic 3d-elasticity at finite strains. Comp. Meth. Appl Mech. Engrg., 130:57–79, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Bhattacharya and R.D. James. A theory of thin films of martensitic materials with applications to microacLualors. J. Mech. Phys. Solids, 47:531–576, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Bourquin, P.G. Ciarlet, G. Geymonat, and A. Raoult. Γ-convergence et analyse asymptotique cles plaques minces. C. R. Acad. Sci. Paris, Ser. I, 315:1017–1024, 1992.

    MATH  MathSciNet  Google Scholar 

  • A. Braides. Γ-Convergence for Beginners. Oxford University Press, Oxford, 2002.

    Book  MATH  Google Scholar 

  • N. Büchter and E. Ramm. Shell theory versus degeneration-a comparison in large rotation finite element analysis, Int. J. Num. Meth. Engrg., 34: 39–59, 1992.

    Article  MATH  Google Scholar 

  • G. C apriz. Continua with Microstructure. Springer, Heidelberg, 1989.

    Google Scholar 

  • P.G. Ciarlet. Mathematical Elasticity, Vol II: Theory of Plates. North-Holland, Amsterdam, first edition, 1997.

    Google Scholar 

  • P.G. Ciarlet. Introduction to Linear Shell Theory. Series in Applied Mathematics. Gauthier-Villars, Paris, first edition, 1998.

    Google Scholar 

  • P.G. Ciarlet. Mathematical Elasticity, Vol III: Theory of Shells. North-Holland, Amsterdam, first edition, 1999.

    Google Scholar 

  • H. Cohen and C.N. DeSilva. Nonlinear theory of elastic surfaces. J. Mathematical Phys., 7:246–253, 1966a.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Cohen and C.N. DeSilva. Nonlinear theory of elastic directed surfaces. J. Mathematical Phys., 7:960–966, 1966b.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Cohen and C.C. Wang. A mathematical analysis of the simplest direct models for rods and shells. Arch. Rat. Mech. Anal, 108:35–81, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Cosserat and F. Cosserat. Théorie des corps déformables. Librairie Scientifique A. Hermann et Pils (engl, translation by D. Delpb ersieh 2007, pdf available at http://www.matheraatik.tudarmstadt.de/fbereiche/anarysis/pde/staff/neff/patrizio/CosseraL html), Paris, 1909.

    Google Scholar 

  • P. Destuyrider and M. Saiauri. Mathematical Analysis of Thin Plate Models. Springer, Berlin, 1996.

    Google Scholar 

  • M. Dikmen. Theory of Thin Elastic Shells. Pitman, London, 1982.

    MATH  Google Scholar 

  • H. Le Dret and A. Raoult. The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Science, 6:59–84, 1996.

    Article  MATH  Google Scholar 

  • H. Le Dret and A. Raoult. The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl., 74: 549–578, 1995.

    MATH  MathSciNet  Google Scholar 

  • J.L. Ericksen and C. Truesdell. Exact theory of stress and strain in rods and shells. Arch. Rat Mech. Anal, 1:295–323, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Ponseca and G. Francfort. On the inadequacy of the sealing of linear elasticity for 3d-2d asymptotics in a nonlinear setting. J. Math. Pures Appl., 80(5):547–562, 2001.

    Article  MathSciNet  Google Scholar 

  • D.D. Fox and J.C. Simo. A drill rotation formulation for geometrically exact shells. Comp. Meth. Appl. Mech. Eng., 98:329–343, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • D.D. Fox, A. Raoult, and J.C. Simo. A justification of nonlinear properly invariant plate theories. Arch. Rat. Mech. Anal., 124:157–199, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Freddi and R. Paroni. The energy density of martensitic thin films via dimension reduction. Interfaces Free Boundaries, 6:439–459, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Friesecke, R.D. James, and S. Müller. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math., 55(11):1461–1506, 2002a.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Friesecke, R.D. James, and S. Müller. The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. C. R. Math. Acad. Sci. Paris, 335(2):201–206, 2002b.

    MATH  MathSciNet  Google Scholar 

  • G. Friesecke, R.D. James, M.G. Mora, and S. Müller. Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Γ-convergence. C. R. Math. Acad. Sci. Paris. 336(8):697–702, 2003.

    MATH  MathSciNet  Google Scholar 

  • G. Friesecke, R.D. James, and S. Müller. A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Rat. Mech. Anal., 180:183–236, 2006.

    Article  MATH  Google Scholar 

  • K. Genevey. Asymptotic analysis of shells via Γ-convergence. J. Comput. Math., 18:337–352, 2000.

    MATH  MathSciNet  Google Scholar 

  • G. Geymoriat, S. Müller, and N. Triantafyllidis. Homogenization of nonlin-early elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rat. Mech. Anal., 122:231–290, 1993.

    Article  Google Scholar 

  • E. De Giorgi. Sulla convergenza. di alcune successioni di integral del tipo dell’ area. Rend. Mat. Roma, 8:227–294, 1975.

    Google Scholar 

  • E. De Giorgi. Γ-convergenza e G-convergenza. Boll. Un. Mat. Ital., 5: 213–220, 1977.

    MathSciNet  Google Scholar 

  • A.E. Green, P.M. Naghdi, and W.L. Wainwright. A generai theory of a Cosserat surface. Arch. Rat. Mech. Anal., 20:287–308, 1965.

    Article  MathSciNet  Google Scholar 

  • F. Gruttmann and R.L. Taylor. Theory and finite element formulation of rubberlike membrane shells using principle stretches. Int. J. Num. Meth. Engrg., 35:1111–1126, 1992.

    Article  MATH  Google Scholar 

  • P. Gruttmann, E. Stein, and P. Wriggers. Theory and numerics of thin elastic shells with finite rotations. Ing. Arch., 59:54–67, 1989.

    Article  Google Scholar 

  • T.J.R. Hughes and F. Brezzi. On drilling degrees of freedom. Comp. Meth. Appl. Mech. Engrg., 72:105–121, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Lods and B. Miara. Nonlinearly elastic shell models: a formal asymptotic approach. II. The flexural model. Arch. Rat. Mech. Anal., 142:355–374, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Dal Maso. Introduction to Γ-Convergence. Birkhäuser, Boston, 1992.

    Google Scholar 

  • B. Miara. Nonlinearly elastic shell models: a formal asymptotic approach. I. The membrane model. Arch. Rat Mech. Anal, 142:331–353, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • R.D. Mindlin. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME, J. Appl. Mech. 18:31–38, 1951.

    MATH  Google Scholar 

  • P.M. Naghdi. The theory of shells and plates. In Handbuch der Physik, Mechanics of Solids, volume VI a/2. Springer, 1972.

    Google Scholar 

  • P. Neff. On Korn’s first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A, 132:221–243, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Neff. Finite multiplicative elastic-viscoplastic Cosserat micropola theory for poly crystals with grain rotations. Modelling and mathematical analysis. Preprint 2297, http://www3. mathemaiik. tudarmstadt. de/fb/MOJJIE/bibliothek/preprinis.htrrd. appeared partly in Int. J. Eng. SET., 9/2003.

    Google Scholar 

  • P. Neff. A finites-train elastic-plastic Cosserat theory for poly crystals with grain rotations. Int. J. Eng. Sci., DOI 10.1016/j.ijengsci.2006.04.002, 44:574–594. 2006a.

    Article  MathSciNet  Google Scholar 

  • P. Neff. The Γ-limit of a finite strain Cosserat model for asymptotically thin domains versus a formal dimensional reduction. In W. Pietraszkiewiecz and C. Szymczak, editors, Shell-Structures: Theory and. Applications., pages 149–152. Taylor and Francis Group, London, 2006b.

    Google Scholar 

  • P. Neff. Existence of minimizers for a geometrically exact Cosserat solid. Proc. Appl Math. Mech., 4(1):548–549, 2004a

    Article  Google Scholar 

  • P. Neff. The Γ-limit of a finite strain Cosserat model for asymptotically thin domains and a consequence for the Cosserat couple modulus. Proc. Appl. Math. Mech., 5(1):629–630, 2005.

    Article  Google Scholar 

  • P. Neff. Existence of minimizers for a, finite-strain micromorphic elastic solid. Preprint 2318, http://www3. mathemaiik. tudarrasiadi.de/fb/rrmthe/bibliMhek/preprints.himl, Proc. Roy. Soc. Edinb. A, 136:997–1012, 2006c.

    MATH  MathSciNet  Google Scholar 

  • P. Neff. A geometrically exact Cosserat-sheil model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Cord. Mech. Thermodynamics, 16(6 (DOI 10.1007/s00161-004-0182-4)):577–628, 2004b.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Neff. A geometrically exact planar Cosserat shell-model with microstructure. Existence of minimizers for zero Cosserat couple modulus. Preprint 2357, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html, Math. Mod. Meth. Appl. Sci.(M3AS), 17(3):363–392, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Neff and K. Chelmiński. A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Rigourous justification via Γ-convergence for the elastic plate. Preprint 2365, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html, 10/2004.

    Google Scholar 

  • P. Neff and S. Forest. A geometrically exact micromorphic model for elastic metallic foams accounting for affine raicrostructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elasticity, 87:239–276, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Neff and I Münch. Curl bounds Grad on SO(3). Preprint 2455, http://www3.mathematik.tu-darmistadt.de/fb/mathe/bibliothek/preprints.html, ESAIM: Control., Optimisation and Calculus of Variations, published online, DOI: 10.1051/cocv:2007050, 14(1):148–159, 2008.

    Article  MATH  Google Scholar 

  • W. Pompe. Korn’s first inequality with variable coefficients and its generalizations. Comment. Math. Univ. Carolinae, 44,1:57–70, 2003.

    MATH  MathSciNet  Google Scholar 

  • E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech., 12:A69–A77, 1945.

    MathSciNet  Google Scholar 

  • E. Reissner. Reflections on the theory of elastic plates. Appl. Mech. Rev., 38(2):1453–1464, 1985.

    Article  Google Scholar 

  • A. Rössle. On the derivation of an asymptotically correct shear correction factor for the Reissner-Mindlin plate model. C. R. Acad. Sei. Paris, Ser. I, Math., 328(3):269–274, 1999.

    MATH  Google Scholar 

  • M.B. Rubin. Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht, 2000.

    MATH  Google Scholar 

  • C. Sansour. A theory and finite element formulation of shells at finite deformations including thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech., 10:194–216, 1995.

    Article  Google Scholar 

  • C. Sansour and H. Bednarczyk. The Cosserat surface as a shell model, theory and finite element formulation. Comp. Meth. Appl. Mech. Eng., 120:1–32, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Sansour and J. Bocko. On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom, Int. J. Num. Meth. Engrg., 43:175–192, 1998.

    Article  MATH  Google Scholar 

  • C. Sansour and H. Buffer. An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int. J. Num. Meth. Engrg., 34:73–115, 1992.

    Article  MATH  Google Scholar 

  • Y.C. Shuh. Heterogeneous thin films of martensitic materials. Arch. Mat. Meek. Anal., 153:39–90, 2000.

    Article  Google Scholar 

  • J.C. Simo and D.D. Fox. On a stress resultant geometrically exact shell model. Part I: Formulation and optima,! parametrization. Comp. Meth. Appl Mech. Eng., 72:267–304, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C Simo and D.D. Fox. On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non-linear dynamics. Comp. Meth. Appl. Mech. Eng., 34:117–164, 1992.

    MATH  MathSciNet  Google Scholar 

  • J.C Simo and J.G. Kennedy. On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms. Comp. Meth. Appl. Mech. Eng., 96:133–171, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comp. Meth. Appl. Mech. Eng., 73:53–92, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Meek. Eng., 79:21–70, 1990a.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C Simo, M.S. Rifai, and D.D. Fox. On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through the thickness stretching. Comp. Meth. Appl. Meek. Eng., 81:91–126, 1990b.

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Steigmann. Tension-field theory. Proc. R. Soc. London A, 429:141–173, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Temam. Mathematical Problems in Plasticity. Gauthier-Villars, New-York, 1985.

    Google Scholar 

  • K. Wisriiewski and E. Turska. Warping arid in-plane twist parameters in kinematics of finite rotation shells. Comp. Meth. Appl. Meek. Engng., 190:5739–5758, 2001.

    Article  Google Scholar 

  • K. Wisniewski and E. Turska. Second-order shell kinematics implied by rotation constraint-equation. J. Elasticity, 67:229–246, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Wriggers and F. Gruttmann. Thin shells with finite rotations formulated in Biot stresses: Theory and finite element formulation. Int. J. Num. Meth. Engrg., 36:2049–2071, 1993.

    Article  MATH  Google Scholar 

  • N. Zaafarani, D. Raabe, R.N. Singh, F. Roters, and S. Zaefferer. Three-dimensional investigation of the texture and microstructure below a nanoinclent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia, 54:1863–1876, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Neff, P. (2010). Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics