Skip to main content

Dynamic Resource Allocation Games

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9928))

Abstract

In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.

This research was supported in part by the European Research Council (ERC) under grants 267989 (QUAREM) and 278410 (QUALITY), and by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this example we require the players to choose their paths incrementally, which is not the general definition we use in the paper.

  2. 2.

    We use “objectives” rather than “strategies” as the second will later be used for dynamic games.

  3. 3.

    It is interesting to allow players to use “redundant resources”; a player’s choice of resources should contain one of his objectives. While in the traditional setting, using a redundant resource cannot be beneficial, in the dynamic setting, it is, as a variant of Example 1 demonstrates.

  4. 4.

    Throughout this paper, we consider pure strategies as is the case in the vast literature on RAGs.

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aumann, R.: Acceptable points in games of perfect information. Contrib. Theory Games 4, 287–324 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Avni, G., Kupferman, O.: Synthesis from component libraries with costs. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 156–172. Springer, Heidelberg (2014)

    Google Scholar 

  5. Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 119–133. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Avni, G., Kupferman, O., Tamir, T.: Congestion games with multisets of resources and applications in synthesis. In: Proceeding of 35th FSTTCS, pp. 365–379 (2015)

    Google Scholar 

  7. Bilò, V., Fanelli, A., Moscardelli, L.: On lookahead equilibria in congestion games. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 54–67. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Correa, J., de Jong, J., de Keijzer, B., Uetz, M.: The curse of sequentiality in routing games. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS, vol. 9470, pp. 258–271. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48995-6_19

    Chapter  Google Scholar 

  9. Chen, H., Roughgarden, T.: Network design with weighted players. Theory Comput. Syst. 45(2), 302–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Jong, J., Uetz, M.: The sequential price of anarchy for atomic congestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 429–434. Springer, Heidelberg (2014)

    Google Scholar 

  11. Fotakis, D.A.: Stackelberg strategies for atomic congestion games. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 299–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res. 37(3), 419–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games Econ. Behav. 21(1–2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. CS Rev. 3(2), 65–69 (2009)

    MATH  Google Scholar 

  15. Leme, R.P., Syrgkanis, V., Tardos, E.: The curse of simultaneity. In: Proceedings of 3rd ITCS (2012)

    Google Scholar 

  16. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. STTT 15, 603–618 (2013)

    Article  MATH  Google Scholar 

  17. Mirrokni, V., Thain, N., Vetta, A.: A theoretical examination of practical game playing: lookahead search. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 251–262. Springer, Heidelberg (2012)

    Google Scholar 

  18. Neumann, J.: Mathematische Annalen. Zur Theorie der Gesellschaftsspiele 100(1), 295–320 (1928)

    Google Scholar 

  19. Papadimitriou, C.: Algorithms, games, and the internet (extended abstract). In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, p. 1. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of 16th POPL, pp. 179–190 (1989)

    Google Scholar 

  21. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roughgarden, T., Tardos, E.: How bad is selfish routing? JACM 49(2), 236–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schulz, A.S., Stier Moses, N.E.: On the performance of user equilibria in traffic networks. In: Proceedings of 14th SODA, pp. 86–87 (2003)

    Google Scholar 

  24. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft 121 (1965)

    Google Scholar 

  25. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of 40th STOC, pp. 355–364 (2008)

    Google Scholar 

  26. Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Avni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avni, G., Henzinger, T.A., Kupferman, O. (2016). Dynamic Resource Allocation Games. In: Gairing, M., Savani, R. (eds) Algorithmic Game Theory. SAGT 2016. Lecture Notes in Computer Science(), vol 9928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53354-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53354-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53353-6

  • Online ISBN: 978-3-662-53354-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics