Skip to main content

What Can We Learn About Ribs and Vertebra Growth from an Osteological Collection?

  • Chapter
The Growing Spine

Abstract

This is one of the first studies to use normative data from an osteological collection to make inferences about growth and development of the human ribs and thorax. Thirty-two pediatric spine and rib specimens from the Hamann-Todd Osteology Collection of the Cleveland Museum of Natural History were studied. There was symmetry and coupled growth between the upper and lower thoracic ribs. The mid-thoracic ribs appeared to grow linearly as rapidly as seen in the distal femur and increased in volume by the mathematical representation of a logarithmic spiral, similar to how other rigid biological structures grow in volume. The vertebral canal is relatively large in the cervical and lumbar spine compared to the thoracic spine, likely for neural protection, while accomodating for greater motion. Unlike other studies that have shown 95 % of the spinal canal area has been completed by age 5 years, our studies show that the canal is 95 % of adult area by age 10 years. However, the spinal canal continues to increase in cross-sectional area up to about age 15 years. Like the spinal canal area, the thoracic spine neurocentral synchondrosis remains partially open through age 17 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canavese F, Dimeglio A (2013) Normal and abnormal spine and thoracic cage development. World J Orthop 4:167–174

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dimeglio A, Canavese F (2012) The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J 21:64–70

    Article  PubMed Central  PubMed  Google Scholar 

  3. Dimeglio A (1993) Growth of the spine before age 5 years. J Pediatr Orthop B 1:102–107

    Article  Google Scholar 

  4. Gollogly S, Smith JT, White SK et al (2004) The volume of lung parenchyma as a function of age: a review of 1050 normal CT scans of the chest with three-dimensional volumetric reconstruction of the pulmonary system. Spine 29(18):2061–2066

    Article  PubMed  Google Scholar 

  5. Sandoz B, Badina A, Laporte S (2013) Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood. Med Biol Eng Comput 51(9):971–979

    Article  PubMed  Google Scholar 

  6. Smithsonian: National Museum of Natural History (2014) What does it mean to be human?.http://humanorigins.si.edu/evidence/human-fossils/fossils. Accessed 30 Dec 2014

  7. Openshaw P, Edwards S, Helms P (1984) Changes in rib cage geometry during childhood. Thorax 39(8):624–627a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Anderson M, Messner M, Green WT (1964) Distribution of lengths of the normal femur and tibia in children from one to eighteen years of age. J Bone Joint Surg 46A(6):1197–1202

    Google Scholar 

  9. Bastir M, Martinez D, Recheis W et al (2013) Differential growth and development of the upper and lower human thorax. PLoS One 8(9):e75128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Erkula G, Sponseller P, Kiter A (2003) Rib deformity in scoliosis. Eur Spine J 12:281–287

    PubMed Central  PubMed  Google Scholar 

  11. Grivas T, Burwell B, Vasiliadis E, Webb J (2006) A segmental radiological study of the spine and rib-cage in children with progressive infantile idiopathic scoliosis. Scoliosis 1:17

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jones R, Kennedy J, Hasham F et al (1981) Mechanical inefficiency of the thoracic cage in scoliosis. Thorax 36:456–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Stokes I, Dansereau J, Moreland M (1989) Rib cage asymmetry in idiopathic scoliosis. J Orthop Res 7:599–606

    Article  CAS  PubMed  Google Scholar 

  14. Tsirikos A, McMaster M (2005) Congenital anomalies of the ribs and chest wall associated with congenital deformities of the spine. J Bone Joint Surg 87A:2523–2536

    Article  Google Scholar 

  15. Machida M, Yamada H, Yamada T et al (2005) Rib length in experimental scoliosis Induced by pinealectomy in chickens. Spine 30:e692–e696

    Article  PubMed  Google Scholar 

  16. Kubota K, Do T, Murata M et al (2013) Disturbance of rib cage development causes progressive thoracic scoliosis. The creation of a nonsurgical structural scoliosis model in mice. J Bone Joint Surg 95, e130

    Article  PubMed  Google Scholar 

  17. Mishra SK (2006) Fitting an origin-displaced logarithmic spiral to empirical data by differential evolution method of global optimization. Available at SSRN: http://ssrn.com/abstract=946123 or http://dx.doi.org/10.2139/ssrn.946123. Accessed 1 Jan 2015

  18. Ferguson J, Kishan S, Blakemore L, Schwend RM, Reigrut JL, Schmidt JA, Akbarnia BA (2013) Posterior rib geometry-what is the ideal site for proximal rib anchors in growing rod surgery? 50th anniversary of international Phillip Zorab symposium, London, 20–21 June 2013

    Google Scholar 

  19. Schwytzer FX (1977) Study of the growth of the vertebral bodies in adolescents. Acta Anat (Basel) 98(1):52–61

    Article  CAS  Google Scholar 

  20. Tulsi RS (1971) Growth of the human vertebral column. An osteological study. Acta Anat (Basel) 79(4):570–580

    Article  CAS  Google Scholar 

  21. Tulsi RS (1970) Growth of the vertebral column and the spinal canal in Australian aborigine. J Anat 106(Pt 1):202

    CAS  PubMed  Google Scholar 

  22. Porter RW, Pavitt D (1987) The vertebral canal: I. Nutrition and development, an archeological study. Spine 12(9):901–906. Porter RW, Drinkall JN, Porter DE, Thorp L (1987) The vertebral canal: II. Health and academic status, a clinical study. Spine 12(9):907–911

    Google Scholar 

  23. Watts R (2013) Lumbar vertebral canal size in adults and children: observations from a skeletal sample from London, England. Homo 64:120–128

    Article  CAS  PubMed  Google Scholar 

  24. Papp T, Porter RW, Aspden RM (1994) The growth of the lumbar vertebral canal. Spine 19(24):2770–2773

    Article  CAS  PubMed  Google Scholar 

  25. Labrom RD (2007) Growth and maturation of the spine from birth to adolescence. J Bone Joint Surg Am 89-A(Supp 1):4–7

    Google Scholar 

  26. Maat G, Matricali B, van Persijn van Meerten E (1996) Postnatal development and structure of the neurocentral junction: its relevance for spinal surgery. Spine 21:661–666

    Article  CAS  PubMed  Google Scholar 

  27. Cañadell J, Beguiristain JL, Glez Iturri J et al (1974) Experimental scoliosis. Rev Med Univ Navarra 18:99–111

    PubMed  Google Scholar 

  28. Parent S, Labelle H, Skalli W et al (2004) Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine 29:239–248

    Article  PubMed  Google Scholar 

  29. Huynh AM, Aubin CE, Rajwani T, Bagnall KM, Villemure I (2007) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16:523–529

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yamazaki A, Mason D, Caro P (1998) Age of closure of the neurocentral cartilage in the thoracic spine. J Pediatr Orthop 18:168–172

    CAS  PubMed  Google Scholar 

  31. Zhang H, Sucato DJ, Nurenberg P, McClung A (2010) Morphometric analysis of neurocentral synchondrosis using magnetic resonance imaging in the normal skeletally immature spine. Spine 35(1):76–82

    Article  PubMed  Google Scholar 

  32. Cil A, Yazici M, Daglioglu K et al (2005) The effect of pedicle screw placement with or without application of compression across the neurocentral cartilage on the morphology of the spinal canal and pedicle in immature pigs. Spine 30:1287–1293

    Article  PubMed  Google Scholar 

  33. Zhang H, Sucato DJ (2008) Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am 90:2460–2469

    Article  PubMed  Google Scholar 

  34. Ruf M, Harms J (2002) Pedicle screws in 1- and 2-year-old children: technique, complications, and effect on further growth. Spine 27:E460–E466

    Article  PubMed  Google Scholar 

  35. Ruf M, Harms J (2003) Posterior hemivertebra resection with trans-pedicular instrumentation: early correction in children aged 1 to 6 years. Spine 28:2132–2138

    Article  PubMed  Google Scholar 

  36. Olgun ZD, Demirkiran G, Ayvaz M et al (2012) The effect of pedicle screw insertion at a young age on pedicle and canal development. Spine 37:1778–1784

    Article  PubMed  Google Scholar 

  37. Elsebaie HB, Salah H, Salaheldine M, Noordeen HH, Akbamia B (2010) Effect of anterior vertebral instrumentation and fusion on spinal canal dimension in children ages one and two years. Read at the 17th international meeting on advanced spine techniques, Toronto 21–24 July 2010, Paper no. 63

    Google Scholar 

  38. Zhou X, Zhang H, Sucato DJ et al (2014) Effect of dual screws across the vertebral neurocentral synchondrosis on spinal canal development in an immature spine: a porcine model. J Bone Joint Surg Am 96, e146 (1–7)

    Article  PubMed  Google Scholar 

  39. Zhang H, Sucato DJ (2011) Neurocentral synchondrosis screws to create and correct experimental deformity: a pilot study. Clin Orthop Relat Res 469(5):1383–1390

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Schwend MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwend, R.M., Akbarnia, B.A., Schmidt, J., Blakemore, L.C., Reigrut, J.L. (2016). What Can We Learn About Ribs and Vertebra Growth from an Osteological Collection?. In: Akbarnia, B., Yazici, M., Thompson, G. (eds) The Growing Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48284-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48284-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48283-4

  • Online ISBN: 978-3-662-48284-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics