Skip to main content

Metric Dimension of Bounded Width Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

The notion of resolving sets in a graph was introduced by Slater (1975) and Harary and Melter (1976) as a way of uniquely identifying every vertex in a graph. A set of vertices in a graph is a resolving set if for any pair of vertices x and y there is a vertex in the set which has distinct distances to x and y. A smallest resolving set in a graph is called a metric basis and its size, the metric dimension of the graph. The problem of computing the metric dimension of a graph is a well-known NP-hard problem and while it was known to be polynomial time solvable on trees, it is only recently that efforts have been made to understand its computational complexity on various restricted graph classes. In recent work, Foucaud et al. (2015) showed that this problem is NP-complete even on interval graphs. They complemented this result by also showing that it is fixed-parameter tractable (FPT) parameterized by the metric dimension of the graph. In this work, we show that this FPT result can in fact be extended to all graphs of bounded tree-length. This includes well-known classes like chordal graphs, AT-free graphs and permutation graphs. We also show that this problem is FPT parameterized by the modular-width of the input graph.

Supported by the European Research Council (ERC) via grant Rigorous Theory of Preprocessing, reference 267959 and the the ELC project (Grant-in-Aid for Scientific Research on Innovative Areas, MEXT Japan).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bodlaender, H.L., Thilikos, D.M.: Treewidth for graphs with small chordality. Discrete Appl. Math. 79(1–3), 45–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandran, L.S., Lozin, V.V., Subramanian, C.R.: Graphs of low chordality. Discrete Math. & Theor. Comput. Sci. 7(1), 25–36 (2005). www.dmtcs.org/volumes/abstracts/dm070103.abs.html

    MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105(1–3), 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 419–430. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)

    Book  MATH  Google Scholar 

  7. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 114–125. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  9. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. In: Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015 to appear

    Google Scholar 

  10. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Franciso (1979)

    MATH  Google Scholar 

  13. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–487. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  15. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC 2013, pp. 266–276. K.lo Alto, California, USA, 5–7 June 2013

    Google Scholar 

  17. Hoffmann, S., Wanke, E.: Metric dimension for gabriel unit disk graphs is NP-complete. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718, pp. 90–92. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  20. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niedermeier, R.: Invitation to Fixed-parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  22. Slater, P.J.: Leaves of trees. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975). pp. 549–559. Congressus Numerantium, No. XIV. Utilitas Math., Winnipeg, Man (1975)

    Google Scholar 

  23. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ramanujan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S. (2015). Metric Dimension of Bounded Width Graphs. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics