Skip to main content

The Benefits of Sometimes Not Being Discrete

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Abstract

Discrete representations of systems are usual in theoretical computer science and they have many benefits. Unfortunately they also suffer from the problem of state space explosion, sometimes termed the curse of dimensionality. In recent years, research has shown that there are cases in which we can reap the benefits of discrete representation during system description but then gain from more efficient analysis by approximating the discrete system by a continuous one. This paper will motivate this approach, explaining the theoretical foundations and their practical benefits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field analysis for the evaluation of gossip protocols. In: Proceedings of 6th Int. Conference on the Quantitative Evaluation of Systems (QEST 2009), pp. 247–256 (2009)

    Google Scholar 

  4. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field framework for performance evaluation of push-pull gossip protocols. Perform. Eval. 68(2), 157–179 (2011)

    Article  Google Scholar 

  5. Benaïm, M., Le Boudec, J.: A class of mean field interaction models for computer and communication systems. In: Performance Evaluation (2008)

    Google Scholar 

  6. Benaïm, M., Le Boudec, J.Y.: On mean field convergence and stationary regime. CoRR, abs/1111.5710 (2011)

    Google Scholar 

  7. Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theor. Comput. Sci. 202(1-2), 1–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient On-the-Fly Model Checking for CTL*. In: Logic in Computer Science (LICS 1995), pp. 388–397 (1995)

    Google Scholar 

  9. Bortolussi, L.: On the approximation of stochastic concurrent constraint programming by master equation, vol. 220, pp. 163–180 (2008)

    Google Scholar 

  10. Bortolussi, L., Hayden, R.A.: Bounds on the deviation of discrete-time Markov chains from their mean-field model. Perform. Eval. 70(10), 736–749 (2013)

    Article  Google Scholar 

  11. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Bortolussi, L., Hillston, J.: Fluid model checking. CoRR, 1203.0920 (2012)

    Google Scholar 

  13. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: A tutorial. In: Performance Evaluation (2013)

    Google Scholar 

  14. Bortolussi, L., Hillston, J.: Checking Individual Agent Behaviours in Markov Population Models by Fluid Approximation. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 113–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Bortolussi, L., Lanciani, R.: Model Checking Markov Population Models by Central Limit Approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To ordinary differential equations and back. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 216–267. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Proceedings of Computational Methods in Systems Biology (CMSB 2005), pp. 204–215 (2005)

    Google Scholar 

  18. Cardelli, L.: Brane Calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cardelli, L.: From Processes to ODEs by Chemistry. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) 5th IFIP International Conference On Theoretical Computer Science - TCS 2008. IFIP, vol. 273, pp. 261–281. Springer, Boston (2008)

    Chapter  Google Scholar 

  21. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: LTL model checking of time-inhomogeneous markov chains. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 104–119. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-time Markov chains against timed automata specifications. Logical Methods in Computer Science 7(1) (2011)

    Google Scholar 

  23. Ciardo, G., Trivedi, K.S.: A Decomposition Approach for Stochastic Reward Net Models. Perform. Eval. 18(1), 37–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3085 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification of temporal properties Form. Methods Syst. Des. 1(2-3), 275–288 (1992)

    Article  Google Scholar 

  26. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the Differential Semantics of Rule-Based Models: Exact and Automated Model Reduction. In: Proceedings of Logic in Computer Science (LICS 2010), pp. 362–381 (2010)

    Google Scholar 

  27. Darling, R.W.R.: Fluid limits of pure jump Markov processes: A practical guide (2002), http://arXiv.org

  28. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Probability Surveys 5 (2008)

    Google Scholar 

  29. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

    Article  Google Scholar 

  30. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems. In: Proceedings of ACM SIGMETRICS 2010, pp. 13–24 (2010)

    Google Scholar 

  31. Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA models of signalling pathways. Theor. Comput. Sci. 404(1-2), 97–111 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gillespie, D., Petzold, L.: Numerical simulation for biochemical kinetics. In: System Modeling in Cellular Biology, pp. 331–353. MIT Press (2006)

    Google Scholar 

  33. Gnesi, S., Mazzanti, F.: An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems. In: Results of the SENSORIA Project, pp. 390–407 (2011)

    Google Scholar 

  34. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theor. Comput. Sci. 411(22-24), 2260–2297 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hayden, R.A., Bradley, J.T., Clark, A.D.: Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE Trans. Software Eng. 39(1), 97–118 (2013)

    Article  Google Scholar 

  36. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1-2), 43–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (1995)

    Google Scholar 

  39. Hillston, J.: Exploiting Structure in Solution: Decomposing Compositional Models. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 278–314. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  40. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of SysTems, QEST 2005, pp. 33 – 42 (2005)

    Google Scholar 

  41. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov Reward Model Checker. In: Proceedings of Quantitative Evaluation of Systems, QEST 2005, pp. 243–244 (2005)

    Google Scholar 

  42. Katoen, J.-P., Mereacre, A.: Model checking HML on piecewise-constant inhomogeneous markov chains. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 203–217. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  43. Kolesnichenko, A., Remke, A., de Boer, P.T., Haverkort, B.R.: Comparison of the mean-field approach and simulation in a peer-to-peer botnet case study. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  44. Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: A logic for model-checking of mean-field models. In: Proceedings of 43rd Int. Conference on Dependable Systems and Networks, DSN 2013 (2013)

    Google Scholar 

  45. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7, 49–58 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kurtz, T.G.: Approximation of population processes. SIAM (1981)

    Google Scholar 

  47. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. International Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)

    Article  Google Scholar 

  48. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  49. Latella, D., Loreti, M., Massink, M.: On-the-fly Fast Mean-Field Model-Checking. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  50. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A Generic Mean Field Convergence Result for Systems of Interacting Objects. In: Proceedings of Quantitative Evaluation of Systems (QEST 2007), pp. 3–18 (2007)

    Google Scholar 

  51. McCaig, C.: From individuals to populations: changing scale in process algebra models of biological systems. PhD thesis, University of Stirling (2008)

    Google Scholar 

  52. McCaig, C., Norman, R., Shankland, C.: Process Algebra Models of Population Dynamics. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 139–155. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  53. McCaig, C., Norman, R., Shankland, C.: From Individuals to Populations: A Symbolic Process Algebra Approach to Epidemiology. Mathematics in Computer Science 2(3), 535–556 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Norman, R., Shankland, C.: Developing the Use of Process Algebra in the Derivation and Analysis of Mathematical Models of Infectious Disease. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 404–414. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  55. Norris, J.R.: Markov Chains. Cambridge University Press (1997)

    Google Scholar 

  56. Priami, C.: Stochastic pi-Calculus. Comput. J. 38(7), 578–589 (1995)

    Article  Google Scholar 

  57. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Regev, A., Shapiro, E.: Cellular Abstractions: Cells as computation. Nature 419(6905), 343–343 (2002)

    Article  Google Scholar 

  59. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American Mathematical Society (2004)

    Google Scholar 

  60. Silva, M., Recalde, L.: Petri nets and integrality relaxations: A view of continuous Petri net models. IEEE Trans. on Systems, Man, and Cybernetics, Part C 32(4), 314–327 (2002)

    Article  Google Scholar 

  61. Silva, M., Recalde, L.: On fluidification of Petri Nets: from discrete to hybrid and continuous models. Annual Reviews in Control 28(2), 253–266 (2004)

    Article  Google Scholar 

  62. Sumpter, D.T.J.: From Bee to Society: An Agent-based Investigation of Honey Bee Colonies. PhD thesis, University of Manchester (2000)

    Google Scholar 

  63. Tofts, C.M.N.: A Synchronous Calculus of Relative Frequency. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 467–480. Springer, Heidelberg (1990)

    Google Scholar 

  64. Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process algebra. IEEE Trans. Software Eng. 38(4), 861–874 (2012)

    Article  Google Scholar 

  65. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

    Article  Google Scholar 

  66. Trivedi, K.S., Kulkarni, V.G.: FSPNs: Fluid Stochastic Petri Nets. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 24–31. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  67. Tschaikowski, M., Tribastone, M.: Tackling continuous state-space explosion in a Markovian process algebra. Theor. Comput. Sci. 517, 1–33 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  68. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hillston, J. (2014). The Benefits of Sometimes Not Being Discrete. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics